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Abstract

Java, with its pragmatic approach to object orientation
and enhancements over C, got very popular for desktop
and server application development. The productivity
increment of up to 40% compared with C++ [1] attracts
also embedded systems programmers. However, standard
Java is not practical on these usually small devices. This
paper presents the status of restricted Java environments
for embedded and real-time systems. For missing defini-
tions, additional profiles are proposed. Results of the
implementation on a Java processor show that it is pos-
sible to develop applications in pure Java on resource
constraint devices.

1 Introduction

Java was first used in an embedded system. In the
early *90s Java, which was originally known as Oak, was
created as a programming tool for a wireless PDA. The
device (known as *7) was a small SPARC based hard-
ware device with a tiny embedded OS. However, *7 was
not issued as a product and Java was officially released in
1995 as a new language for the internet (to be integrated
into Netscape’s browser). Over the years, Java technol-
ogy has become a programming tool for desktop applica-
tions and web services. With every new release, the li-
brary (defined as part of the language) grows bigger and
bigger.

Java for embedded systems was clearly out of Sun’s
focus. With the arrival of mobile phones, Sun again be-
came interested in this embedded market. Sun defined
different subsets of Java, which are analyzed in this pa-
per.

As the language became popular, with easier object
oriented programming than C++ and threads defined as
part of the language, its usage in real-time systems was
considered. Two competing groups began to define how
to convert Java for use in these systems.

Nilsen published the first paper on this subject in No-
vember 1995 [2] and formed the Real-Time Working
Group. The other group, known as the Real-Time Expert
Group, published the RTSJ (Real-Time Specification for
Java) [3]. RTSJ was the first specification request under
Sun’s Java Community Process and gained much atten-
tion from academic and industrial research.

This paper will give:

* An extended overview of actual specifications for
Java for embedded and real-time systems

* Proposed definitions to fill the gap for small embed-
ded systems, implemented on JOP (a Java Opti-
mized Processor) [4]

This paper is structured as follows. Section 2 summa-
rizes the problems with standard Java on embedded sys-
tems. The various definitions for small devices given by
Sun are described in Section 3. Section 4 gives an over-
view of the two real-time extensions of Java and ap-
proaches for restricting RTSJ for high-integrity applica-
tions. If, and how, these specifications are sufficient for
small embedded systems in general and specifically for
JOP is analyzed. In Section 5 the missing definition for
small embedded real-time systems is proposed. Imple-
mentation results of this definition and conclusions are
presented in Section 6 and 7 respectively.

2 Java Support for Embedded Systems

When not using the cyclic executive approach, pro-
gramming of embedded (real-time) systems is all about
concurrent programming with time constraints. The basic
functions can be summarized as:

e Threads

¢ Communication

e Activation

¢ Low level hardware access

2.1 Threads and Communication

Java has a built in model for concurrency, the class
Thread. All threads share the same heap resulting in a
shared memory communication model. Mutual exclusion
can be defined on methods or code blocks with the key-
word synchronized. Synchronized methods acquire a lock
on the object of the method. For synchronized code
blocks, the object to be locked is explicitly stated.

2.2  Activation

Every object inherits the methods wait(), notify() and
notifyAll() from Object. These methods in conjunction
with synchronization on the object support activation.

The classes java.util.TimerTask and java.util.Timer
(since JDK 1.3) can be used to schedule tasks for future
execution in a background thread.



2.3 Problems

Although Java has language features that simplify
concurrent programming the definition of these features
is too vague for real-time systems.

2.3.1 Threads and Synchronization

Java, as described in [5], defines a very loose behavior
of threads and scheduling. For example, the specification
allows even low priority threads to preempt high priority
threads. This protects threads from starvation in general
purpose applications, but is not acceptable in real-time
programming. Even an implementation without preemp-
tion is allowed.

Wakeup of a single thread with notify() is not precisely
defined: the choice is arbitrary and occurs at the discre-
tion of the implementation.

It is not mandatory for a JVM to deal with the priority
inversion problem.

2.3.2  Garbage Collector

Garbage collection greatly simplifies programming
and helps to avoid classic programming errors (e.g.
memory leaks), but is not suitable for real-time systems
and problematic in embedded systems. A more conserva-
tive approach to memory allocation is necessary.

2.3.3  WCET on Interfaces (OOP)

Interfaces (and method overriding), the key concepts
in Java to support object oriented programming, are prob-
lematic for WCET (Worst Case Execution Time) analysis
such as function pointers in C. Implementation of inter-
face look up usually requires a search of the class hierar-
chy or very large dispatch tables.

2.3.4  Dynamic Class Loading

Dynamic class loading requires the resolution and
verification of classes. This function is usually too com-
plex (and too memory consuming) for embedded devices.
Upper bound of execution time for this function is almost
impossible to predict (or too large). This results in com-
plete avoidance of dynamic class loading in real-time
systems.

2.3.5 Standard Library

For an implementation to be Java-conformant, it must
include the full library (JDK). The JAR files for this li-
brary constitutes about 15 MB (in JDK 1.3, without na-
tive libraries), far too large for many embedded systems.

Since Java was designed to be a save language with a
save execution environment no classes are defined for
low-level access to hardware features.

The standard library was not defined and coded with
real-time applications in mind.

3 Java Micro Edition

The definition of Java also includes the definition of
the class library (JDK). This is a huge library and too
large for some systems. To compensate for this Sun has
defined the Java 2 Platform, Micro Edition (J2ME) [6].
As Sun has changed the focus of Java targets several
times, the specifications reflect this through their slightly
chaotic manner. J2ME reduces the function of the JVM
(e.g. no floating point support) to make implementation
easier on smaller processors. It also reduces the library
(API).

J2ME defines three layers of software built upon the
host operating system of the device:

Java Virtual Machine: This layer is just the JVM as in
every Java implementation. Sun has assumed that
the JVM will be implemented on top of a host oper-
ating system. There are no additional definitions for
the J2ME in this layer.

Configuration: The configuration defines the minimum
set of JVM features and Java class libraries available
on a particular category of devices. In a way, a con-
figuration defines the lowest common denominator
of the Java platform features and libraries that the
developers can assume to be available on all de-
vices.

Profile: The profile defines the minimum set of Applica-
tion Programming Interfaces (APIs) available on a
particular family of devices. Profiles are imple-
mented upon a particular configuration. Applica-
tions are written for a particular profile and are thus
portable to any device that supports that profile. A
device can support multiple profiles.

There is an overlap of the layers configuration and
profile: Both define/restrict Java class libraries.

Sun states: ‘A4 profile is an additional way of specify-
ing the subset of Java APIs, class libraries, and virtual
machine features that targets a specific family of de-
vices.” However, in the current available definitions JVM
features are only specified in configurations.

3.1 Connected Limited Device Configuration
(CLDC)

CLDC is a configuration for connected devices with at
least 192 kB of total memory and a 16-bit or 32-bit proc-
essor. As the main target devices are cellular phones, this
configuration has become very popular (Sun: ‘CLDC was
designed to meet the rigorous memory footprint require-
ments of cellular phones.”). The CLDC is composed of
the K Virtual Machine (KVM) and core class libraries.

The following features have been removed from the
Java language definition:

* No floating point support
¢ No finalization



Error handling has been altered so that the JVM halts
in an implementation-specific manner.

The following features have been removed from the
JVM:

* Floating point support

» Java Native Interface (JNI)

» Reflection

* Finalization

* Weak references

» User-defined class loaders

* Thread groups and daemon threads
* Asynchronous exceptions

» Data type long is optional

These restrictions are defined in the final version 1.0
of CLDC. A newer version (1.1) again adds floating-
point support. All currently available devices (as listed by
Sun) support version 1.0.

The CLDC defines a subset of the following Java class
libraries: java.io, java.lang, java.lang.ref and java.util.

An additional library (javax.microedition.io) defines a
simpler interface for communication than java.io and
java.net. Examples of connections are: HTTP, datagrams,
sockets and communication ports.

A small-footprint JVM known as K Virtual Machine
(KVM) is part of the CLDC distribution. KVM is suitable
for 16/32-bit microprocessors with a total memory budget
of about 128 kB.

When implementing CLDC, one may choose to pre-
load/prelink some classes. A utility (JavaCodeCompact)
combines one or more Java class files and produces a C
files that can be compiled and linked directly with the
KVM.

There is only one profile defined under CLDC: the
Mobile Information Device Profile (MIDP) defines a user
interface for LC displays, a media player and a game
APIL.

3.2 Connected Device Configuration (CDC)

The CDC defines a configuration for devices with net-
work connection and assumes a minimum of a 32-bit
processor and 2 MB memory. CDC defines no restric-
tions for the JVM. A virtual machine, the CVM, is part of
the distribution. The CVM expects the following func-
tionality from the underlying OS:

e Threads

* Synchronization (mutexes and condition variables)

* Dynamic linking

* malloc (POSIX memory allocation utility) or
equivalent

* Input/output (I/O) functions

* Berkeley Standard Distribution (BSD) sockets

* File system support

¢ Function libraries must be thread-safe. A thread
blocking in a library should not block any other VM
threads.

The tools JavaCodeCompact and JavaMemberDepend
are part of the distribution. JavaMemberDepend gener-
ates lists of dependencies at the class member level. The
existence of JavaCodeCompact implies that preloading
of classes is allowed in CDC.

Three profiles are defined for CDC:

Foundation Profile is a set of Java APIs that support
resource-constrained devices without a standards-
based GUI system. The basic class libraries from the
Java standard edition (like java.io, java.lang and
java.net) are supported and a connection framework
(javax.microedition.io) is added.

Personal Basis Profile is a set of Java APIs that support
resource-constrained devices with a standards-based
GUI framework based on lightweight components. It
adds some parts of the Abstract Window Toolkit
(AWT) support (relative to JDK 1.1 AWT).

Personal Profile completes the AWT libraries and in-
cludes support for the applet interface.

Although a device can support multiple profiles addi-
tional libraries for RMI and ODBC are known as op-
tional packages.

3.3 Additional Specifications

The following specifications do not fit into the layer
scheme of J2ME. However, they are defined in the same
way as the above subsets of the JVM and sub-
sets/extensions of Java classes (API):

Java Card is a definition for the resource-constraint
world of smart cards. The execution lifetime of the
JVM is the lifetime of the card. The JVM is highly
restricted (e.g. no threads, data type int is optional)
and defines a different instructions set (i.e. new
bytecodes to support smaller integer types).

Java Embedded Server is an API definition for services
such as HTTP.

Personal Java was intended as a Java platform on Win-
dows CE and is now marked as end of life.

Java TV is an extension to produce interactive television
content and manage digital media. The description
states that the JVM runs on top of a RTOS, but no
real-time specific extensions are defined.

Other than Sun’s, the only view specifications that ex-
ist for embedded Java are:

1eJOS [7] is a JVM for Lego Mindstorm with stronger
restrictions on the core classes than the CLDC.

RTDA [8] although named ‘Real-Time Data Access’ the
definition consists of two parts:



* An I/O data access API specification applicable for
real-time and non real-time applications.

* A minimal set of real-time extensions to enable the
I/O data access also to cover hard real-time capable
response handling.

3.4 Discussion

Many of the specifications (i.e. configurations and
profiles) are developed using the Java Community Proc-
ess (JCP). JCP is not an open standard nor is it part of the
open source concept. Although the acronym J2ME im-
plies Java version 2 (i.e. JDK 1.2 and later) almost all
technologies under J2ME are still based on JDK 1.1.

Besides Java Card, CLDC is the ‘smallest’ definition
from Sun. It assumes an operating system and is quite
large (the JAR file for the classes is about 450 kB). There
are no API definitions for low-level hardware access.
CLDC is not suitable for small embedded devices. Java
Card defines a different JVM instruction set and thus
compromises basic ideas of Java.

A more restricted definition with following features is
needed:

e JVM restrictions, such as in CLDC 1.0

» A package for low-level hardware access

* A minimum subset of core libraries

* Additional profiles for application domains

4 Real-Time Extensions

In 1999, a document defining the requirements for
real-time Java was published by NIST [9]. Based on
these requirements, two groups defined specifications for
real-time Java. A comparison of these two specifications
and as compared with Ada 95°s Real-Time Annex can be
found in [10]. The following section gives an overview
of these specifications and additional defined restrictions
of RTSIJ.

4.1 Real-Time Core Extension

The Real-Time Core Extension [11] is a specification
published under the J Consortium. It is still in a draft ver-
sion.

Two execution environments are defined: the Core
environment is the special real-time component. It can be
combined with a traditional JVM, the Baseline. For com-
munication between these two domains, every Core
object has two APIs, one for the Core domain and one for
the Baseline domain. Baseline components can synchro-
nize with Core components via semaphores.

Two forms of source code are supported to annotate
attributes: stylized code with calls of static methods of
special classes and syntactic code with new keywords.
Syntactic code has to be processed by a special compiler
Or preprocessor.

4.1.1 Memory

A new object hierarchy with CoreObject as root is in-
troduced. To override final methods from Object the se-
mantics of the class loader is changed. It replaces these
methods with special named methods from CoreObject. A
Core task is only allowed to allocate instances of
CoreObject and its subclasses. These objects are allocated
in a special allocation context or on the stack. The objects
are not garbage collected. However, an allocation context
can be explicit freed by the application.

4.1.2  Tasks and Asynchrony

Core tasks represent the analog of java.lang.Threads.
All real-time tasks must extend CoreTask or one of its
subclasses. No interface such as java.lang.Runnable is
defined. Tasks are scheduled preemptive priority-based
(128 levels) with FIFO within priorities. Time slicing can
be supported, but is not required.

Although stop() is depreciated in Java 2 it is allowed
in the CoreTask for the asynchronous transfer of control
(besides a class ATCEvent). To prevent the problem of
inconsistent objects after stopping a task an atomic syn-
chronized region defers abortion.

A special task class is defined to implement interrupt
service routines. The code for this handler is executed
atomically and must be WCET analyzable. SporadicTask
is used to implement responses to sporadic events, trig-
gered by invoking the trigger() method of the task. No
enforcement of minimum time between arrivals of events
is available.

No special events or task types are defined for peri-
odic work. The methods sleep() and sleepUntil() of Core-
Task can be used to program periodic activity.

4.1.3  Exceptions

References from the java.lang.Throwable class hierar-
chy are silently replaced by the class loader with refer-
ences to Core classes. A new scoped exception, which
needs special support from the JVM, is defined.

4.1.4  Synchronization

snychronized is only allowed on this. To compensate
for this restriction additional synchronization objects like
semaphores and mutexes are defined. Queues on moni-
tors, locks and semaphores are priority and FIFO ordered.
Priority inversion is avoided by using the priority ceiling
protocol. To allow locks to be implemented without
waiting queues, a Core task is not allowed to execute a
blocking operation while it holds a lock.

4.1.5 Helper Classes

The standard representation of time is a long (64-bit)
integer with nanosecond resolution. A Time class with
static methods is provided for conversions. A helper class



supports treating signed integers as unsigned values.
Low-level hardware ports can be accessed via IOPort.

4.2 Discussion on the RT Core

A new introduced object hierarchy and new language
keywords lead to changes in the class verifier and loader
semantics. The behavior of the JVM has changed, so it
would make sense to change the methods of Object to fit
to the Core definition. This would result in a single object
hierarchy. The restriction on synchronized disables the
elegant style of expressing general synchronization prob-
lems in Java.

Although Nilsen lead the group, NewMonics PERC
systems [12] support a different API.

43 RTSJ

The Real-Time Specification for Java (RTSJ) defines a
new API with support from the JVM [3]. The following
guiding principles led to the definition:

* No restriction of the Java runtime environment

* Backward compatibility for non-real-time Java pro-
grams

* No syntactic extension to the Java language or new
keywords

* Predictable execution

* Current practice and allow future implementations to
add advanced features

A Reference Implementation (RI) of RTSJ forms part
of the specification. RTSJ is backward compatible with
existing non-real-time Java programs, which implies that
RTSJ is intended to run on top of J2SE (and not on
J2ME). The following section presents an overview of
the RTS]J.

4.3.1 Threads and Scheduling

A priority-based, preemptive scheduler with at least 28
real-time priorities is defined as base scheduler. Addi-
tional levels (ten) for the traditional Java threads need to
be available. Threads with the same priority are queued
in FITO order. Additional schedulers (e.g. EDF) can be
dynamically loaded. The class Scheduler and associated
classes provide optional support for feasibility analysis.

Any instances of classes that implement the interface
Schedulable are scheduled. In RTSJ RealtimeThread,
NoHeapRealtimeThread, and AsyncEventHandler are
schedulable objects. NoHeapRealtimeThread has and
AsyncEventHandler can have a priority higher than the
garbage collector. As the available release-parameters
indicate, threads are ether periodic or asynchronous
events. Threads can be grouped together to bind the exe-
cution cost and deadline for a period.

4.3.2  Memory

As garbage collection is problematic in real-time ap-
plications, RTSJ defines new memory areas:

Scoped memory is a memory area with bound lifetime.
When a scope is entered (with a new thread or
through enter()), all new objects are allocated in this
memory area. Scoped memory areas can be nested
and shared among threads. On exit of the last thread
from a scope, all finalizers of the allocated objects
are invoked and the memory area is freed.

Physical memory is used to control allocation in memo-
ries with different access time.

Raw memory allows byte-level access to physical mem-
ory or memory-mapped 1/O.

Immortal memory is a memory shared between all
threads without a garbage collector. All objects cre-
ated in this memory area have the same live time as
the application (a new definition of immortal).

Heap memory is the traditional garbage collected mem-
ory.

Maximum memory usage and the maximum allocation
rate per thread can be limited. Strict assignment rules
between the different memory areas have to be checked
by the implementation.

4.3.3  Synchronization

The implementation of synchronized has to include an
algorithm to prevent priority inversion. Priority inheri-
tance protocol is the default and priority ceiling can be
used on request. Threads waiting to enter a synchronized
block are priority and FIFO within priority ordered. Wait
free queues are provided for communication between
instances of java.lang.Thread and RealtimeThread.

4.3.4  Time and Timers

Classes to represent relative and absolute time with
nanosecond accuracy are defined. All time parameters are
split to a long for milliseconds and an int for nanoseconds
within those milliseconds. Each time object has an asso-
ciated Clock object. Multiple clocks can represent differ-
ent sources of time and resolution. This allows for the
reduction of queue management overheads for tasks with
different tolerance for jitter. A new type, rationale time,
can be used to describe periods with a requested resolu-
tion over a longer period (i.e. allowing release jitter be-
tween the points of the oufer period). Timer classes can
generate time-triggered events (one shot and periodic).

4.3.5 Asynchrony

Program logic representing external world events is
scheduled and dispatched by the scheduler. An
AsyncEvent object represents an external event (such as a
POSIX signal or a hardware interrupt) or an internal



event (through call of fire()). Event handlers are associ-
ated to these events and can be bound to a regular real-
time thread or represent something similar to a thread.
The relationship between events and handlers can be
many-to-many. Release of handlers can be restricted to a
minimum interarrival time.

Java’s exception handling is extended to represent
asynchronous transfer of control (ATC). RealtimeThread
overloads interrupt() to generate an Asynchronousinter-
ruptedException (AIE). The AIE is deferred until the exe-
cution of a method that is willing to accept ATC. The
method indicates this by including AIE in its throw
clause. The semantics of catch is changed so that, even
when it catches an AIE, the AIE is still propagated until
the happened() method of the AIE is invoked. Timed, a
subclass of AIE, simplifies the programming of timeouts.

4.3.6  Support for RTSJ

Implementations of RTSJ are still rare and under de-
velopment:

RI is the freely available reference implementation for a
Linux system [13].

jRate is an open-source implementation based on ahead-
of-time compilation with GNU compiler for Java
[14].

FLEX is a compiler infrastructure for embedded systems
developed at MIT [15]. Real-Time Java is imple-
mented with region-based memory management and
a scheduler framework.

aJile supports RTSJ with CLDC 1.0 on top of the aJ-80
and aJ-100 chips.

4.4 Discussion of the RTSJ

RTSJ is a complex specification leading to a big mem-
ory footprint. Size of the RI on Linux:

* C(lasses in javax/realtime: 343 kB
» All classes in library foundation.jar: 2 MB
* Timesys JVM executable: 2.6 MB

RTSJ assumes a RTOS and the RI runs on a heavy-
weight RT-Linux system. RTSJ is too complex for low-
end embedded systems. This complexity also hampers
programming of high-integrity applications.

Runtime memory allocation of the RTSJ classes is not
documented.

4.4.1 Threads and Scheduling

If a real-time thread is preempted by a higher priority
thread, it is not defined if the preempted thread is placed
in front or back of the waiting queue. It is not specified
whether the default scheduler performs, or has to per-
form, time slicing between threads of equal priority.

4.4.2  Memory

It would be ideal if real-time systems were able to al-
locate all memory at the initialization phase and forbid
dynamic memory in the mission phase. However, this
restricts many of Java’s library functions.

The solution to this problem in RTSJ is ScopedMem-
ory, a memory space with limited lifetime. However, it
can only be used as a parameter for thread creation or
with enter(Runnable r). In a system without dynamic
thread creation, using scoped memory at creation time of
the thread leads to the same behavior as using immortal
memory. The syntax with enter() leads to a cumbersome
programming style: for each code part where limited life-
time memory is needed a new class has to be defined and
a single instance of this class allocated at initialization
time. Trying to solve this problem elegantly with anony-
mous classes, as in Figure 1 (example from [16] p. 623),
leads to an error.

import javax.realtime.*;
public class ThreadCode implements Runnable

private void computation()

final int min 1%1024;

final int max 1%1024;

final LTMemory myMem = new
LTMemeory(min, max);

myMem.enter(new Runnable()

public void run()

; // access to temporary memory
s
3

public void run()

computation();

Figure 1: Example of scoped memory usage

On every call of computation(), an object of the
anonymous class (and a LTMemory object) is allocated in
immortal memory, leading to a memory leak.

A simpler syntax is shown in Figure 2. The main
drawback of this syntax is that the programmer is respon-
sible for its correct usage.



LTMemory myMem;

// create memory once in constructor
MyThread() { .
myMem = new LTMemeory(min, max);

}
public void runQ {

myMem.enter();

{ // new code block disables access
// to new objects in outer scope.
// access to temporary memory
Abc a = new Abc(Q);

myMem.exit();

Figure 2: Simpler syntax for scoped memory

New objects and arrays of objects have to be initial-
ized to their default value after allocation [17]. This usu-
ally results in zeroing the memory at the JVM level and
leads to variable (but linear) allocation time. This is the
reason for the type LTMemoryArea in the RTSJ. As sug-
gested in [14], this initialization could be lumped together
with the creation time and exit time of the scoped mem-
ory. This results in constant time for allocation (and usu-
ally faster zeroing of the memory).

With RTSJ memory areas, it is difficult to move data
from one area to another [18]. This results in a com-
pletely different programming model from that of stan-
dard Java. This can result in the programmer developing
his/her own memory management.

4.4.3  Time and Timers

Why is the time split into milliseconds and nanosec-
onds? In the RI, it is converted to ns for add/subtract.
After all mapping and converting (AbsoluteTime,
HighResolutionTime, Clock and RealTimeClock) the Sys-
tem.currentTimeMillis() time is used.

Since time triggered release of tasks can be modeled
with periodic threads, the additional concept of timers is
superfluous.

4.4.4  Asynchrony

An unbound AsyncEventHandler is not allowed to en-
ter() a scoped memory. However, it is not clear if scoped
memory is allowed as a parameter in the construction of
a handler. An unbound AsyncEventHandler leads to the
implicit start of a thread on an event. This can (and, in the
RI, does - see [14]) lead to substantial overheads. From
the application perspective, bound and unbound event
handlers behave in the same way. This is an implementa-
tion hint expressed through different classes. A consistent
way to express the importance of events would be a
scheduling parameter for the minimum allowed latency
of the handler.

The syntax that is used in the throws clause of a
method to state that ATC will be accepted is misleading.
Exceptions in throws clauses are usually generated in a
method and not accepted.

4.4.5 J2SE Library

It is not specified which classes are safe to be used in
RealTimeThread and NoHeapRealTimeThread. Several
operating system functions can cause unbound blocking
and their usage should be avoided. The memory alloca-
tion in standard JDK methods is not documented and the
use in immortal memory can lead to memory leaks.

4.4.6 Missing Features

There is no concept such as start mission. Changing
scheduling parameters during runtime can lead to incon-
sistent scheduling behavior.

There is no provision for low-level blocking such as
disabling interrupts. This is a common technique in de-
vice drivers where some hardware operations have to be
atomic without affecting the priority level of the request-
ing thread (e.g. a low priority thread for a flash file sys-
tem shall not get preempted during sector write as the
chip internal write starts after a timeout).

4.4.7  On Small Systems

Many embedded systems are still built with 8 or 16-bit
CPUs. 32-bit processors are seldom used. Java’s default
integer type is 32-bit, still large enough for almost all
data types needed in embedded systems. Why are (often
expensive) longs (64 bit integer) used in the RTSJ?

4.5 Subsets of RTSJ

RTSJ is complex to implement and applications de-
veloped with RTSJ are difficult to analyze (because of
some of the sophisticated features of the RTSJ). Various
profiles have been suggested for high-integrity real-time
applications that result in restrictions of the RTSJ.

4.5.1 A Profile for High-Integrity Real-Time Java
Programs

In [19], a subset of the RTSJ for high-integrity appli-
cation domain with hard real-time constraints is pro-
posed. It is inspired by the Ravenscar profile for Ada [20]
and focuses is on exact temporal predictability.

Application structure: The application is divided in two
different phases: initialization and mission. All non
time-critical initialization, global object allocations,
thread creation and startup are performed in the ini-
tialization phase. All classes need to be loaded and
initialized in this phase. The mission phase starts af-
ter returning from main(), which is assumed to exe-
cute with maximum priority. The number of threads
is fixed and the assigned priorities remain un-
changed.



Threads: Two types of tasks are defined: Periodic time-
triggered activities execute an infinite loop with at
least one call of waitForNextPeriod(). Sporadic ac-
tivities are modeled with a new class SporadicEvent.
A SporadicEvent is bound to a thread and an exter-
nal event on creation. Unbound event handlers are
not allowed. It is not clear if programmatic trigger of
the event is allowed (invocation of fire()). A restric-
tion for a minimum interarrival time of events is not
defined. Timers are not supported as time-triggered
activities are well supported by periodic threads.
Asynchronous transfers of control, overrun and miss
handles and calls to sleep() are not allowed.

Concurrency: Synchronized methods with priority ceil-
ing protocol provide mutual exclusion to shared re-
sources. Threads are dispatched in FIFO order
within each priority level. Sporadic events are used
instead of wait, notify and notifyAll for signaling.

Memory: Since garbage collection is still not time pre-
dictable, it is not supported. This implicit converts
the traditional heap to immortal memory. Scoped
memory (LTMemory) is provided for object alloca-
tion during the mission phase. LTMemory has to be
created during the initialization phase with initial
size equal maximum size.

Implementation: For each thread and for the operations
of the JVM WCET must be computable. Code is re-
stricted to bound loops and bound recursions. Anno-
tations for WCET analysis are suggested. The JVM
needs to check the timing of events and thread exe-
cution. It is not stated how the JVM should react to a
timing error.

4.5.2 Ravenscar-Java

The Ravenscar-Java profile [21] is a restricted subset
of RTSJ and is based on work mentioned above (4.5.1).
As the name implies it resembles Ravenscar Ada [20]
concepts in Java.

To simplify the initialization phase RJ defines Initial-
izer, a class that has to be extended by the application
class which contains main(). The use of time scoped
memory is further restricted. LTMemory areas are not
allowed to be nested nor shared between threads. Tradi-
tional Java threads are disallowed by changing the class
java.lang.Thread. The same is true for all schedulable
objects from the RTSJ. Two new classes are defined:

* PeriodicThread where run() gets called periodically,
removing the loop construct with waitForNextPe-
riod().

» SporadicEventHandler binds a single thread with a
single event. The event can be an interrupt or a soft-
ware event.

4.5.3  Criticisms of Subsets of the RTSJ

If a subset of RTSJ is implemented and allowed it is
harder for programmers to find out what is available and

what not. This form of compatibility causes confusion.
The use of different classes for a different specification is
clearer and less error prone.

Ravenscar-Java, as a subset of the RTSJ, claims to be
compatible with the RTSJ, in the sense that programs
written according to the profile are valid RTSJ programs.
However, mandatory usages of new classes such as Peri-
odicThread need an emulation layer to run on a RTSJ
system. In this case, it is better to define complete new
classes for a subset and provide the mapping to RTSJ.
This allows a clearer distinction to be made between the
two definitions.

It is not necessary to distinguish between heap and
immortal memory. Without a garbage collector, heap
implicitly equates to immortal memory.

Objects are allocated in immortal memory in the ini-
tialization phase. In the mission phase, no objects should
be allocated in immortal memory. Scoped memory can be
entered and subsequent new objects are allocated in the
scoped memory area. Since there are no circumstances in
which allocation in these two memory areas are mixed,
no newlnstance() such as those in the RTSJ or Raven-
scar-Java are necessary.

4.6 Extensions to RTSJ

The Distributed Real-Time Specification for Java [22]
extends RMI within the RTSJ. In 2000, it was accepted in
the Sun Community Process as JSR-50. This specifica-
tion is still under development. According to [23], three
levels of integration between RTSJ and RMI are defined:

Level 0: No changes in RMI and RTSJ are necessary.
The proxy thread on the server acts as an ordinary
Java thread. Real-time threads cannot assume timely
delivery of the RMI request.

Level 1: RMI is extended to Real-Time RMI. The server
thread is a real-time thread that inherits scheduling
parameters from the calling client.

Level 2: RMI and RTSJ are extended to form the concept
of distributed real-time threads. These threads have
a unique system-wide identifier and can move freely
in the distributed system.

5 Proposed Definitions for Small Em-
bedded Systems

Restrictions on Java, such as the available configura-
tions and profiles of J2ME and the RTSJ, are still too
large and complex for small embedded real-time systems.
Simpler definitions are therefore proposed: a configura-
tion restricts the function of the JVM and the necessary
library. Class definitions for low-level I/O are added. On
top of this configuration, a profile for high-integrity real-
time applications is defined.



5.1 Small Embedded Devices Configuration
(SEDC)

SEDC is a configuration that fits into Sun’s J2ME
layer model. It is intended for small embedded devices
with a 16-bit (or even 8-bit) microprocessor and a low
memory budget (below 128 kB). The JVM restrictions
are similar to CLDC 1.0. The subset of the Java classes is
smaller.

5.1.1 Restrictions of the JVM

The Following features have been removed from the
JVM:

* Floating point support

» Data type long is optional

» Java Native Interface (JNI)

» Reflection

* Finalization

* C(lass loading is optional

* Threads are optional

* Thread groups and daemon threads
* Asynchronous exceptions

To simplify the JVM the application is preverified and
preloaded (and sometimes also linked with the JVM).

Since small embedded devices have no or only a very
simple user interface (like switches and LEDs), no stream
input/output facilities are usually necessary. As memory
is very limited, the Java class library is reduced to the
absolute minimum. Only the following classes need to be
available:

java.lang.Object
java.lang.String

Should threads be part of SEDC? There are no threads
in, for example, Java Card and we in any case define new
thread behavior (with real-time semantics) in an extra
profile.

An additional library is provided for low-level 1/O-
access:

5.1.2 Class IOPort

Static methods of this class allow the application low-
level access to 1I/O ports.
private I0Port()

No instantiation of this class is allowed.
public static int read(int address)

Read from I/O port.

public static void write(int value, int address)
Write to I/O port.

5.1.3 Class Clock

Almost all microcontrollers have some kind of timer
or counter. The class Clock provides a standard way of
querying counter values.

public static int count()

Returns the current time in clock ticks. Tick frequency
is device dependent and can be queried.
public static int ticksPerSecond()

Returns the resolution of the clock.
public static int ticksPerMs()

Returns the resolution of the clock per millisecond.
This method is necessary if the clock frequency leads to
an overflow of'int, i.e. it is higher than 2.15 GHz.
public static int resolutionInBits()

Returns the length of the internal clock in bits.

5.1.4  Class Interrupt

The interrupt handler must extend the class Interrupt
and register itself on an interrupt. For simple blocking, all
interrupts can be disabled.
public static void enable()

This method general enables interrupts. The individual
masking of interrupts is device specific and is handled via
IOPort.
public static void disable()

This method disables all interrupts (like cli on x86).

public static final Interrupt register(int
number)

An object registers itself using this method. The inter-
rupt number is device dependent. A previous installed
handler is returned (or null).
public abstract void handle()

An interrupt causes the object's handle method to be
called.

5.2 A Real-Time Profile for Embedded Java

A simple real-time profile is defined in the concept of
the ADA Ravenscar profile [20]. It resembles the con-
cepts from [19] and [21] but is not compatible with RTSJ.
Since the application domain for RTSJ is different from
high-integrity systems, it makes sense for it not to be
compatible with RTSJ. Restrictions can be enforced de-
fining new classes (e.g. setting thread priority in the con-
structor of a real-time thread alone, enforcing minimum
interarrival times for sporadic events).

This profile addresses the same devices as SEDC (it is
not, of course, restricted to small devices). With an emu-
lation layer, it should be possible to run programs written
for this specification on top of RTSJ.

The guidelines:

» High-integrity profile.

» Easy syntax, simplicity.

* Easy to implement.

* Low runtime overhead.

* No syntactic extension of Java.

* Minimum change of Java semantics.

e Support for time measurement if WCET analysis
tools are not available.

¢ Known overhead (documentation of runtime behav-
ior and memory requirements of every JVM opera-
tion and all methods have to be provided).



* Implementation possible on top of SEDC.

5.2.1 Application Structure

The following restrictions apply to the application:

¢ [Initialization and mission phase.

* Fixed number of threads.

» Threads are created at initialization phase.

» All shared objects are allocated at initialization.

5.2.2  Threads
Three schedulable objects are defined:

RtThread represents a periodic task. As usual task work is
coded in run() which gets called on missionStart(). A
scoped memory object can be attached to a RtThread
at creation.

HwEvent represents an interrupt with a minimum interar-
rival time. If the hardware generates more interrupts,
they get lost.

SwEvent represents a software-generated event. It is trig-
gered by fire() and needs to override handle().

Figure 3 shows the definition of the basic classes.

public class RtThread {

public RtThread(int priority, int period)

public RtThread(int priority, int period,
int offset)

public RtThread(int priority, int period,
Memory mem)

public RtThread(int priority, int period,
int offset, Memory mem)

public void enterMemory()
public void exitMemory()

public void run(Q)
public boolean waitForNextPeriod()

) public static void startMission()

public class HwEvent extends RtThread {
public HwEvent(int priority, int minTime,
. int number)
public HwEvent(int priority, int minTime,
Memory mem, int number)

public void handle()

public class SwEvent extends RtThread {
public SwEvent(int priority, int minTime)
public SwEvent(int priority, int minTime,
Memory mem)

public final void fire()
public void handle()

Figure 3: Schedulable objects

5.2.3  Scheduling

Threads and events are scheduled with fixed priority.
No real-time threads or events are scheduled during the
initialization phase. Most real-time systems use a fixed-
priority preemptive scheduler. Tasks with the same prior-
ity are usually scheduled in a FIFO order. Two common
ways to assign priorities are rate monotonic or, in a more
general form, deadline monotonic assignment. When two
tasks are given the same priority, we can choose one of
them and assign a higher priority to that task and the task
set will still be schedulable. This results in a strictly
monotonic priority order and we do not need to deal with
FIFO order. This eliminates queues for each priority level
and results in a single, priority ordered task list with
unlimited priority levels.

Synchronized blocks are executed with priority ceiling
protocol. With objects for which the priority is not set, a
top priority is assumed. This avoids priority inversions on
objects that are not accessible from the application (e.g.
objects inside a library).

In addition, the scheduler contains methods for worst-
case time measurement for both the periodic work and
handler methods. These measured execution times can be
used during development when no WCET analysis tool is
available.

5.2.4  Memory

The profile does not support a garbage collector. All
memory allocation should be done at initialization phase.
For new objects during the mission phase, a scoped
memory is provided. Every scoped memory area can be
assigned to one RtThread. A scoped memory cannot be
shared between threads. No references from the heap to
scoped memory are allowed. Scoped memory is explicitly
entered and left with calls from the application logic.
Memory areas are cleared on creation and when leaving
the scope (call of exitMemory()) leading to a memory area
with constant allocation time.

5.2.5 Restriction of Java

A list of some of the language features that should be
avoided for WCET analyzable real-time threads and
bound memory usage:

WCET: Only analyzable language constructs are al-
lowed.

Static class initialization: Since the definition when to
call the static class initializer is problematic, they are
disallowed. Move this code to a static method (e.g.
init()) and call it explicit in the initialization phase.

Inheritance: Reduce usage of interfaces and overridden
methods.

String concatenation: In immortal memory scope only
string concatenation with string literals is allowed.



Finalization: finalize() has a weak definition in Java.
Because real-time systems run forever, objects in the
heap will never be finalized. Objects in scoped
memory are released on exitMemory(). However, fi-
nalizations on these objects complicate WCET
analysis of exitMemory().

Dynamic Class Loading: Due to the implementation and
WCET analysis complexity dynamic class loading is
avoided.

A program analysis tool can greatly help in enforcing
these restrictions.

5.2.6 An Example

Figure 4 shows the principle coding of a worker
thread. An example for creation of two real-time threads
and an event handler can be seen in Figure 5.

public class worker extends RtThread {
private SwEvent event;

public worker(int p, int t,
SwEvent ev) {

super(p, t,
// create a scoped memory area
) new Memory(10000)
event = ev;
initQ;

private void init() {
/ all initialzation stuff
// has to be placed here

public void runQ) {

for (55) {
work(); // do some work
event.fire(); // and fire an event

// some work in scoped memory
enterMemory();
workwithmem() ;
exitMemory();

// wait for next period
if (!waitForNextPeriod()) {
missedbeadline();

3
// should never reach this point

Figure 4: A periodic real-time thread

// create an Event
Handler h = new Handler(3, 1000);

// create two worker threads with

// priorities according to their periods
Fastworker fw = new Fastworker(2, 2000);
worker w = new Worker(1l, 10000, h);

// change to mission phase for all
// periodic threads and event handler
RtThread.startMission();

// do some non real-time work
// and call sleep() or yield()
for (53) {
watchdogB1link();
Thread.sleep(500);

Figure 5: Start of the application

6 Implementation Results

The proposed profile is implemented on JOP. In this
section, the implementation of the simple real-time pro-
file is compared with the RI (Reference Implementation)
of RTSJ on top of Linux. JOP is implemented in a low
cost FPGA (Cyclone EP1C6) from Altera clocked with
20 MHz. The clock frequency is defined by the board
used and not by the design. According to the place &
route tool, the design can be clocked up to 100 MHz in
this FPGA. The test results for the RI were obtained on
an Intel Pentium MMX 266 MHz, running Linux SuSE
8.2 with a generic kernel version 2.4.20 and TimeSys
GPL Linux 3.1 [24] as recommended by the RI. For each
test 500 measurements were made.

6.1 Periodic Threads

Many activities in real-time systems must be per-
formed periodically. Low release jitter is of major impor-
tance for tasks such as control loops. The test setting is
similar to the periodic thread test in [25]. A single real-
time thread only calls waitForNextPeriod() in a loop and
records the time between calls that follow. Table 1 shows
the average, standard deviation and extreme values for
different period times on JOP. In Table 2 the same values
are shown for the RI.



Avg.  Std. Dev.  Min. Max.
T=300us | 300 us 9lus 256us 499 us
T=500 us 500 us Ous 500us 500 us
T=1 ms 1 ms 0 ms 1 ms 1 ms
T=5 ms 5 ms 0 ms 5 ms 5 ms
T=10 ms 10 ms Oms 10ms 10ms
T=30 ms 30 ms Oms 30ms 30ms
T=50 ms 50 ms Oms 50ms 50ms

Table 1: Jitter of Periodic Threads with JOP.

Avg.  Std. Dev.  Min. Max.
T=500 us 315us 93 us 18 us 569 us
T=1ms 1.00ms 0.0l ms 0946 ms 1.055ms
T=5ms 400ms 792ms 0.017ms 19.90 ms
T=10 ms 6.64ms 934ms 0.019ms 19.94 ms
T=20 ms 20.0ms 0.015ms 19.87ms 20.14 ms
T=30 ms 30,0ms 0.031ms 29.69ms 30.31 ms
T=35 ms 350ms 5.001 ms 29.75ms 40.25 ms
T=50 ms 50.0ms 0.018 ms 49.95ms 50.06 ms

Table 2: Jitter of Periodic Threads with RI/RTSJ.

Using of a microsecond accurate timer interrupt, pro-
grammed by the scheduler, results in excellent perform-
ance of periodic threads in JOP. No jitter can be observed
with a single thread at periods above 300 us.

The measurements for the RI do not include the first
values. The first values are slightly misleading, as the RI
behaves unpredictable at starfup. The RI performs inac-
curately at periods below 20 ms. This effect has also been
observed in [25]. Larger periods that are multiples of 10
ms have very low jitter. However, using a period such as
35 ms shows a standard deviation of five ms. A detailed
look at the collected samples shows only values of 30 and
40 ms. This implies a timer tick of 10 ms in the underly-
ing operating system. No real difference can be seen
when running this test on the generic Linux kernel and
the TimeSys kernel. Table 2 gives the measurements on
the generic kernel.

6.2 Context Switch

The test setting consists of two threads. A low priority
thread continuously stores the current time in a shared
variable. A high priority periodic thread measures the
time difference between this value and the time immedi-
ately after waitForNextPeriod(). Table 3 gives the time for
the context switch in processor clock cycles.

Avg.  Std. Dev. Min. Max.

JOP 4088 10.29 4083 4116
RI Linux 4253 1239 3232 19628
RITS Linux | 12923 1145 11529 21090

Table 3: Time for a Thread Switch in Clock Cycles.

This test did not produce the expected behavior from
the RI on the generic Linux kernel. When the low priority
thread runs in this tight loop, the high priority thread was
not scheduled. After inserting a Thread.yield() and an
operating system call, such as System.out.print(), in this
loop, the test performed as expected. This indicates a
major problem in the RI or the operating system sched-
uler. This problem did not occur when the RI was run on
the TimeSys Linux kernel. However, the context switch
time was three times longer than on the standard kernel.

6.3 Asynchronous Event Handler

In this test setting, a high priority event handler is
triggered by a low priority periodic thread. As
AsynchEventHandler  performs  poorly [14], a
BoundAsynchEventHandler is used for the RI test
program. The time elapsed between the invocation of
fire() and the first statement of the event handler is
measured. Table 4 shows the elapsed time in clock cycles
for JOP and the RTSJ RI.

Avg.  Std. Dev.  Min. Max.

JOP 4283 3.0 4283 4350
RI Linux 53685 7014 47400 87196
RITS Linux | 69273 7832 63060 101292

Table 4: Dispatch Latency of Event Handlers.

The time taken to dispatch an asynchronous event is
similar to the context switch time in JOP. This is to be
expected as events are scheduled and dispatched as
threads. The maximum value occurred only for the first
event, all following events being dispatched in the mini-
mum time.

In the RI, the dispatch time is about 10 times larger
than a context switch with a significant variation in time.
This indicates that the implementation of fire() and the
communication of the event to the underlying operating
system is not optimal. The time factor between context
switch and event handling on the TimeSys kernel is lower
than on the standard kernel, but is still significant.

6.4 Ravenscar Java

To verify that the profile is expressive enough for
high-integrity applications, Ravenscar Java was imple-
mented on top of it. The only restriction observed is the
absence of support for long in the JVM. This type is man-



mandatory in the RTSJ for absolute and relative time
definitions.

6.5 Resource Usage

JOP is implemented on a low cost FPGA (EP1C6)
consuming about 30% of the chip area. The unused area
can be used for custom peripherals or a multi processor
solution on a single chip. This resource usage is similar to
Alteras NIOS, a 32-bit load/store RISC processor.

The basic JVM with the proposed real-time extension
consumes 9 KB of memory, leaving enough room for the
application code and data even in very small devices. The
real-time scheduler needs 0.5 KB per thread at runtime.

7 Conclusion

Some definitions of Java for embedded and real-time
systems do exist. CLDC, as a restriction for embedded
systems, suits small systems best, but is still large. The
most common specification for real-time Java is RTSIJ.
However, this specification is complex and large, making
it not the primary choice for small embedded systems or
high-integrity systems. Restrictions on the RTSJ can
transform the definition into a high-integrity profile, but
they inherit the complex API. A very small configuration
for embedded systems and a high-integrity real-time pro-
file that fits this configuration are proposed. The configu-
ration and the profile are implemented on top of JOP and
used in a number of real-world applications. Future work
will explore additional hardware support for real-time
systems in JOP. The implementation of JOP and the real-
time profile is available at: http://www.jopdesign.com.
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