1 Tuning a Processor for FPGA Technology

This paper describes some methods to tune a soft-core processor, in this example a Java
Optimized Processor (JOP), for the FPGA technology.

Table 1 shows the starting point for the enhancement with device utilization and
maximum system speed of JOP in different FPGA families. JOP configuration consists
of the core with an UART and the timer. As a reference NIOS, the RISC soft-core from
Altera, is also included in the list. Version A is a minimum configuration without
external memory. Version B adds an external memory interface, multiplication support
and a timer.

Processor Pipelin FPGA Resource [LC] Memory [KB] fmax [MHz]
e
JOP 4 EP1C6Q240C6 2024 3 94
JOP 4 EP1K50TC144- 2413 3 47
1
JOP 4 XC2S300E-6 2634 3 32
NIOS A 5 EP1C6Q240C6 1828 6.2 120
NIOS B 5 EP1C6Q240C6 2923 5.5 119

Table 1: Starting Point

1.1 Find the Major Delays in the Design

Find the critical path through and insert registers. Doing this several times can give you
a quick insight where your longest delays are and if the pipeline is balanced. In JOP it
can be observed that the longest delays are in the translation from bytecodes to
microcode addresses. An additional pipeline stage in this part increased the frequency
by 13% to 106 MHz. The next hot spot is the 32-bit single cycle barrel shifter. Shift
operation constitute about 0.26% in the dynamic instruction mix. Slowing down this
operation to two cycles is not a big performance loss. At this point, we have gained a
speedup of 18% from the original design with one additional pipeline stage. This design
change increases only the CPI of the branch instructions from 4 to 5 resulting in 45 ns
for a branch instead of 42.6 ns. Branch instructions constitute about 10.5% of the
executed bytecodes (1.25% of them are unconditional). The next limiting design block
is the calculation of the branch condition. Inserting a register changes the CPI for the
conditional branches to 6, however the pipeline is still five stages long. Assuming all
other instructions to be single cycle simplifies performance calculation. This is not the
case in JOP, however all multicycle instructions gain direct from the increased clock
frequency. The performance loss through the longer pipeline in the branch instructions
gets less important when these instructions are correct counted. x shows that the
solution with an added pipeline stage and a latency increase for the branch condition is
18% faster than the original design.

The next major delay is the microinstruction ROM. The address register is clocked
with the inverted clock to keep the pipeline length short. If we change this to the normal
clock, we end up with a maximum frequency of 145 MHz and an average instruction
time of 11.2 ns. This is only a gain of 5% compared to the previous version. Further
changes in the design with added registers show now the limiting components in the
stack, the execution unit and the fetch unit again. Adding registers to these different
stages result in frequencies of 147, 148, 154, 156 and 160 MHz. The version with 156
MHz shows now a performance degration with this simplified model. The 160 MHz
version changes the execution time of local variables access to two cycles. However,
these instructions constitute about 30.4% of all instructions. This results in an average
execution time of 14 ns, longer than in the original design.

However, these changes are very radical and result in a too long pipeline. With this
little increase of the clock frequency and the maximum delay spread over all pipeline
stages we reached the limit of this technology. With the former solution, the pipeline is
now well balanced.

CPlistages = 0.105*4 + 0.895*1 = 1.315

CPU timessuages = CPI * cycle time = 1.315 * 10.6 ns = 13.9 ns
CPlsgtages = 0.105*5 + 0.895*1 = 1.42

CPU timesages = CPI * cycle time = 1.42 * 9 ns = 12.78 ns
CPlicgeona = 0.0925*6 + 0.0125*5 + 0.895*1 = 1.513

CPU timeregeona = CPI * cycle time = 1.513 * 7.8 ns = 11.8 ns
CPlrom = 0.0925*7 + 0.0125*%6 + 0.895*%1 = 1.618

CPU timerom = CPI * cycle time = 1.618 * 6.9 ns =11.2 ns
CPlis¢ =0.0925%9 + 0.0125*8 + 0.895*1 = 1.83

CPU time;ss = CPI * cycle time = 1.83 * 6.4 ns = 11.7 ns
CPlLigo=0.105%10 + 0.304*2 + 0.591*1 =2.25

CPU timeiso = CPI * cycle time = 2.25 * 6.25 ns = 14.1 ns

Design Changes Pipelin fmax [MHz]
e
Original design 4 94
Register in the translation stage 5 106
Two cycle barrel shifter 5 111
Register branch condition 5/6 128
Use positive edge for ROM address register ~ 6/7 145
Add a register to stack fill 7/8 147
Additional register in the decoding stage 8/9 148
Three cycle barrel shifter 8/9 156
Another register in the translation stage 9/10 154
Two cycle load of local variable 9/10 160

Table 2: Find the Major Delays in JOP

1.2 Changing the Fetch Logic

The inverted clock on the ROM address is used to get a microinstruction from the ROM
in a single cycle. We can change the address register to the normal clock when feeding it
with the pc multiplexer and not the pc output. However, the ROM address port is not
connected to the reset signal. During reset, the first value written to the address register
is pc+1, which is 1. Consequently, the fist microcode instruction is never executed. This
change did not increase operating frequency (it is now 81 MHz), because the pc
multiplexer now feeds two different registers adding interconnection delay. Now with
the positive triggered address we can change the ROM to unregistered data output und
use a discrete instruction register. The unregistered data output is now in the same
pipeline level as the output from bcfetbl. The generation of the two signals jfetch and
Jjopdfetch, which consumes 71 LCs and a significant delay of about 5 ns, can now be
moved in the ROM. The ROM is now effective 10 bits wide. The multiplexer for the
bytecode read address can be can be simpler than the multiplexer for jpc. A little delay
can be saved by registering the address calculation for bytecode branches. However, to
keep a pipeline length of 4, the lower 8 bits of the offset have to be read from the
unregistered output of the bytecode RAM. Table 3 shows the results for different FPGA
types after these optimizations. For the Xilinx version the generic ROM (rom.vhd) was
used to be automatically placed in a block ram, instead of generating a Xilinx specific
version (as in Table 1). This is probably the reason for the lower performance.

FPGA Resource [LC] Memory [KB] fmax [MHz]
EP1C6Q240C6 2036 3.25 100
EP1KS50TC144- 2393 3.25 56

1

XC2S300E-6 2572 3.5 29

Table 3: Optimization of Instruction Fetch

