
Towards Formal co-Validation of Hardware and
Software Timing Models of CPS

Mihail Asavoae1, Imane Haur1, Mathieu Jan1,
Belgacem Ben Hedia1, Martin Schoeberl2

1 CEA, List, France, firstname.lastname@cea.fr
2 Technical University of Denmark, masca@dtu.dk

Abstract. Timing analysis of safety-critical systems derives timing
bounds of applications (SW) executed on dedicated platforms (HW).
The ensemble HW–SW features, from a timing perspective, two different
types of computation – a SW-specific, instruction-driven timing progres-
sion and a HW-specific, cycle-driven one. The two timings are unified
under a concept of timing model, which is crucial to establish sound and
precise timing reasoning. In this paper we propose an investigation on
how to systematically derive and formally prove such timing models. Our
approach is exemplified on a simple, accumulator-based processor called
Lipsi.

Keywords: timing analysis, timing model, formal semantics, Chisel,
HW/SW co-validation

1 Introduction

Cyber-physical systems (CPSs) integrate computations running on embedded
platforms into physical systems that they interact with. This integration, ex-
pressed through feedback loops between software and the physical environment,
may need to satisfy strong timing guarantees. To verify them, worst-case timing
analyses of safety-critical systems are combined. Such analysis cover timing be-
haviors of computations (e.g., the worst-case execution time analysis, WCET),
communications (e.g., the worst-case traversal time analysis) or both (e.g., the
worst-case response time analysis). The commonality of all these analyses is that
the application semantics are projected on the timing behavior of the underlying
platforms. In this work, we are interested in manipulating the computations,
viewed as a set of binaries of software (SW), i.e. sequences of instructions de-
scribed at the instruction set architecture (ISA) binary level. On the embedded
platforms side, i.e. hardware level (HW), our inputs are register transfer-level
(RTL) descriptions of processors in a given hardware description language (HDL).
We thus omit any networking components and focus for now on single-core or
multi-core architectures only.

At these levels of design, a timing verification relies on a WCET analysis [41]. A
WCET analysis computes safe and accurate timing bounds of a SW executed on a
HW, where the HW is abstracted to micro-architecture elements (e.g., instruction

2 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

and data caches, pipeline, speculation mechanisms, etc.). The workflow of the
WCET analysis consists of a series of static SW- and HW-level analyses. A first
analysis extracts the control flow graph (CFG) from the binary, with nodes
being basic (single-entry, single-exit) blocks and edges safely representing the
program flow. Then, the CFG is augmented with flow facts (e.g., loop bounds)
and HW-related information (e.g., cache behavior). Finally, a path analysis,
performed on the augmented CFG, determines the longest execution path which
represents the WCET bound. In this workflow, a cache analysis reports that, for
example, a basic block is classified as “always miss” in the cache and the timing
behavior associated is a cache miss penalty, for example 10 cycles. However, it
is not always simple to establish such architecture-dependent bounds due to
complexity and unwanted timing phenomena [40]. WCET analyses require a
proper timing model, whose correctness and accuracy ensure safe but also tight
WCET estimations.

SW HW
execution

Formalization
+ Trace equivalence via testing

Formal
ISA

Formal
HDL

+ timing

Verification

Fig. 1: General workflow for the HW/SW co-validation of timing models for CPS.

In this work, we focus on building and validating such timing models for CPS.
Figure 1 shows our proposed general workflow that combines the formalization
of the timing behaviors of both SW and HW sides. For the SW side, a timing
model is added to a formal description of the ISA by relying on the input textual
specification of the architecture. Both the functional and timing behaviors of
this timing augmented formal SW model are tested, for confidence, against
traces of actual code first over an Instruction Set Simulator (ISS) and then
over a real execution. Note that by real execution, we mean traces generated
by executing HDL code, i.e. the circuit, should be on a FPGA or by a cycle
accurate simulator. Similarly, on the HW side, a formal model is built which
thus includes by construction a timing behavior. The confidence in this formal
HW model is also verified by applying trace equivalence. Finally, a last step
consists in the co-validation of these hardware and software formal timing models,
i.e. verifying the consistency of their two timing models. More specifically, the

Towards Formal co-Validation of HW/SW Timing Models of CPS 3

instruction-level timing, from the SW model is encoded as a set of assertions,
called timing invariants, in the formal HW model. A timing invariant identifies
the hardware pattern, i.e. the sequence of updates on registers and wires that
must be executed in x cycles, corresponding to the execution of an instruction in
the timing augmented SW model in x cycles. We then prove the obtained timing
model of a particular pairing of programs (SW) over platform (HW) by model
checking the formal HW model with these timing invariants.

To illustrate how this general approach can be used when designing CPS,
we apply it over Lipsi processors [37]. Lipsi is a sequential tiny processor whose
simplicity enables us to focus on building the complete approach for this HW
platform. Lipsi comes with two components: an instruction-set simulator and
the circuit, specified in Chisel [4]. We then build both HW and SW models
using respectively the Temporal Logic of Actions (TLA+) formal specification
language [20] and the Sail formal language dedicated to express ISA [1]. We detail
these models, the simple timing model of Lipsi that we add in the SW model
and how we add these timing invariants in the HW model of Lipsi. These timing
invariants are then checked using the model-checker of TLA+, called TLC. In the
formalization phase we discovered semantic issues between the intended behavior
of Lipsi, from [37] and the actual Lipsi code. Finally, we report a possible use
case for such verified timing models of CPS: the detection and minimization of
memory interferences in a multi-core setting of Lipsi.

The remainder of this paper is organized as follows. Section 2 introduces the
formal languages we rely on to build the HW and SW models of our general
approach. It also provides an overview of the timing behavior of the Chisel
language, from which the timing behavior of our HW model is constructed.
In Section 3, we present the workflow we develop to achieve the HW/SW co-
verification of timing models of CPS. Section 4 applies this approach to a case
study: the Lipsi processor. We provide concrete examples of the HW and SW
formal models of Lipsi using TLA+ and Sail languages. Section 5 reports and
discuss the obtained results when considering this Lipsi case study. Section 6
presents related work, before concluding in Section 7.

2 Preliminaries

In this section, we briefly introduce two specialized specification languages we
rely on to build the formal HW and SW models. To formally specify hardware
behavior, we use the TLA+ language [20, 43], as it is a high-level specification
language for modeling concurrent systems and comes with a model-checker. On
the SW side, we use Sail [1] to formally model programs as it is tailored for
expressing Instruction-Set Architecture (ISA) semantics of processors. It has
been successfully applied to formalize various ISAs, such as ARM, RISC-V and
MIPS [1]. The K framework, which was recently used for a formal executable se-
mantics of x86-64 ISA [10], is another option we have not yet considered so far [2].

4 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

Chisel. We first introduce the programming language we assume as input to
perform hardware designs. We select the Chisel programming language [4] due
to its current rising popularity in the hardware design community and its ability
to reduce hardware design times. Chisel generates Verilog HDL, whose formal
semantic has been studied in [12, 27]. Compared to Verilog, Chisel provides some
higher-level constructs to raise the level of hardware design abstraction, as it
is embedded in the Scala programming language. Scala promotes a functional-
style programming and uses a strong static type system to facilitate concise
and re-usable code – some necessary attributes to address complex hardware
designs. Chisel also supports testing through an internal cycle-accurate hardware
simulator. We now briefly describe several language elements of Chisel, while
more elaborate examples are presented in Section 4.3 when we formally specify
the Lipsi processor from Chisel code.

Hardware designs are constructed on Chisel typed values which flow through
wires, i.e. the combinational part of circuits, or held in state elements, i.e. the
sequential part of circuits. The keyword val is used to declare variables whose
values do not change. As basic datatypes, Bool represents the boolean values,
SInt and UInt represent signed and respectively unsigned integers. For example,
val x = UInt(2) declares x to be the unsigned int 2. The bit size of x is unspec-
ified here, but could be inferred from the usage of x or specified to be 32-bit with
UInt(2, width=32). Simple combinational circuits are described using the val

keyword. For example, val land = a & b has in land the bitwise and of a and b.
Chisel uses registers for state elements, for instance, val r = RegInit(0.U) ini-
tializes r to 0. There are also conditional combinational circuits built with the class
Wire and the conditional construct when. For example, val x = Wire(UInt(0))

declares x to be an wire initialized to unsigned int 0 and modified to 1 as follows:
when (cond) { x := 1.U }. The assignment operator := connects the input of
the left-hand side to the output of the right-hand side.

TLA+ is a modeling language proposing an advanced module system, untyped
set theory and predicate logic, making it suitable to specification of complex
computational systems such as computer architectures. TLA+ language is based
on the notion of action (i.e., a transition predicate), which captures a state change
as follows: an action x’ = x + 1 updates the next value, primed of x based on
the current, unprimed value of x. If x is a record, its field f is accessed as x.f

and a partial record update is expressed with [x EXCEPT!.f = v], changing f

to v and leaving the other fields of x unchanged. A module M having an action A

could be referred in another module via the operator ”!”, as M!A. An instance of
M could be created inside another module with the construct INSTANCE M WITH,
with the state variables of M being initialized after the keyword WITH.

Abstraction and refinement are natural with TLA+ and, supported by an
explicit model checker called TLC, form a powerful formal specification and
verification framework. It features stuttering invariance to reason about the
specification paths at different levels of granularity and temporal existential
quantification to slice away the unnecessary state elements. We elaborate more

Towards Formal co-Validation of HW/SW Timing Models of CPS 5

on the language and model checking of TLA+ specifications in Section 4.3 where
we present the case study of Lipsi processor.

Sail is a first order imperative language that comes with a type system for
bitvector lengths and indexing to enables static checking. A Sail specification relies
on the definition of an Abstract Syntax Type (AST) of the ISA of an architecture,
i.e. an union of types with parameters. To each AST value, specific execute and
decode functions are associated to respectively specify the sequential semantic
of the instruction and the matching of its binary representation to its AST
value. For readability and modularity, Sail supports the definition of scattered
functions and unions allowing to group decode, execute and the AST value of an
instruction in one place. The memory space and the registers of the architectural
state of a processor manipulated by each instruction can also be specified to
model data transfer paths. To this end, a specific register type is supported and
it is possible to annotate functions with effects to describe their impact on either
the declared memories or registers. From a Sail specification, both emulators
and theorem-prover definitions can be generated to support fast execution of
programs or deductive reasoning. In section 4.2, we provide examples on how we
use Sail to formally specify the ISA of the Lipsi processor.

3 Co-validation of timing models: general approach

Comp1

Comp2 Comp3

Comp4

BinType1 BinType2 BinType3

Plat1 Plat2 Plat3

CPS

SW

HW

Fig. 2: Components Compi of a CPS are classified based on their execution environments.

Typical CPSs are organized as networks of computational and communication
elements which interact with the physical environment. CPSs are subject to
various properties such as adaptability, autonomy, reliability, security or safety.
From a structural point of view, a CPS features multiple components specified

6 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

and implemented at different levels of details and using different modeling or
specification languages. From a functional point of view, each such language
comes with its own semantics to address specific points. As such, the CPS seman-
tics landscape includes hybrid approaches, synchronous data flow approaches,
simulation or verification languages, general-purpose programming languages,
such as C, etc.. We thus abstract a CPS to ensembles of communicating binaries
running of various platforms, as shown on Fig. 2. Heterogeneous computational
and communicational components, Compi are to be deployed for execution on
various platforms, which is, in the general case, a many-to-many relation. For
example, Plat3 could be an multi/many-core system with applications from
Comp3−4 being executed in parallel. Also, different applications from Comp1
could be executed on Plat1 and Plat2, whereas the applications of Comp2 are
executed only on Plat1.

3.1 Motivations: consistency of timings

Let us elaborate on the semantics landscape of CPSs with respect to timing
properties, because well-defined timing is crucially important to ensure several
of the aforementioned properties of CPSs. Timing models capture how software
applications, or programs, are mapped on hardware resources, when it comes
to timing behavior. Timing models are necessary to perform timing analyses.
A timing analysis needs to be safe and accurate and the most precise timing
is to be found at the execution platform-level, i.e. the HW-level. To bridge the
gap between HW-level timing and various ways of expressing timing at the
application-level, i.e. the SW level, a timing analysis is usually performed on
binaries. From a semantic perspective, the working language is the assembly
languages specific to the execution platform under consideration, i.e. the ISA.

The high-level functional and temporal properties are however obfuscated
or even lost when translated to this binary low-level, i.e. BinType1−3 in Fig. 2.
Let us consider a Model-Based Design (MBD) workflow, based on a synchronous
language [7] as high-level programming language. The high-level specification is
transformed into an intermediate language code, usually the C language, in a
correct by construction way, ensured by the well-synchronized property of the
high-level code. Then, a general purpose compilation chain, in the absence of
compiler optimization, could produce binaries which are traceable to the source
code. However, the initial high-level timing properties can no longer be directly
expressed at the binary level, as most ISAs simply do not include timing. A
few exceptions exist, such as PRET [26] and the Patmos [38] architectures that
provide instructions that explicitly manipulate timings. Even when it is up to
the compiler to schedule instructions over a given hardware architecture, the
defined timing behavior is limited to a single instruction in isolation. There is
no way to impact the timing behavior of the whole architecture, as in PRET
or Patmos. This prevents to implement in a proper way the initial high-level
temporal properties, which thus simply disappear at the binary level. It is the
goal of WCET analyses to recover them at this level.

Towards Formal co-Validation of HW/SW Timing Models of CPS 7

When designing an hardware architecture, its timing behavior is in general not
formalized. Besides, it remains to demonstrate, or at least show enough confidence,
that the timings are correctly implemented by the circuit. Most formal verification
of hardware designs focus on the functional side of an implementation, as for
instance in [42], to cite an open-source tool/project. While the timing semantic
of HDL languages has been the subject of various work (see section 2), the
timing behavior of a given micro-architecture is much more complex to identify
and verify due to pipeline stalling, forwarding, interlocking, etc. The associated
logic can be dispatched in different places of the design and mixed with rich
low-level functionalities, such as the logic in charge of the functional part of the
architecture. It is in general unclear when an instruction terminates its execution.
Appropriate abstraction and slicing are necessary to extract the timing model of
a hardware design so that it can be used to perform WCET analyses, i.e. if the
high-level temporal properties can be fulfilled over the given architecture.

3.2 Building timing models

In this work, we consider the pair SW and HW represented by BinTypei and
respectively Plati in Fig. 2 and how models can be established between them. The
SW model is supported by instruction-level simulation, sometimes with an ad-hoc
cycle-level timing, whereas the HW model is a cycle-accurate execution. Now, a
timing model in this context is a function between the time progression of SW,
measured in executed instructions and the cycle-accurate timing, corresponding
to HW. Since we use such timing models in worst-case reasoning (to safely
guarantee timing behaviors), we accompany this function with information on
timing predictability [39] and timing compositionality [14]. In other words, our
definition of timing model also includes knowledge on timing anomalies [35].

We propose a formal framework to construct and validate, from these HW and
SW models, such timing models of CPS, abstracted as in Fig. 2. This framework
relies on a combination of trace equivalences and model checking, as shown in
Fig. 1. On the SW side, the steps of our workflow are thus the following:

1. We formalize the SW component by defining a formal executable semantics
of BinTypei ISA language.

2. This formal SW model is first tested, by comparing its output against traces
generated from an Instruction Set Simulator (ISS), to gain confidence in the
correctness of the functional part of the formal ISA model.

3. The formal SW model is then extended with timing behavior for each instruc-
tion. The augmented model is tested by comparing its output against traces
from ISS, augmented with cycle-level timing behaviors, to gain confidence in
the added timing model.

The result is a thoroughly tested formal SW model, though manually asserted,
with a cycle-level timing behavior, i.e. formal ISA + timing in Fig. 1. Note that
if a cycle-level simulator is not available, the timing behavior added in the above
step (3) must be verified against traces from executions of the considered circuit.

8 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

Note that we can leverage existing formal SW models, such as [1] or [10] to avoid
steps (1) and (2).

We propose similar steps to construct a formal HW model for Plati. Compared
to the SW side of our workflow, a timing behavior already exists at the HDL
level: we have to extract it. The steps on the HW side are thus the following:

1. We construct a formal executable HW model of the considered circuit. This
is currently being done manually, automatically generating the HW model
being a work in progress.

2. The built formal HW model is then tested, by comparing its outputs against
traces from executions of the circuit, to gain confidence that it behaves as
precisely as possible to the timing behavior of the HDL.

The result of these steps is a formal HW model with a cycle-accurate timing,
denoted by formal HDL in Fig. 1. Obviously, we assume that a description of the
circuit in HDL or using a higher-level language, such as Chisel, is available. If it
is not the case, a more abstract HW model can be built from the specifications
of the data paths. The timing accuracy of such models is of course more limited.
Finally, note by executions of the circuit for step (2) on the HW side and step
(3) on the SW side, we mean either the use of a cycle-accurate HDL simulators,
such as Verilator or the built-in simulator of Chisel, or runs over a FPGA board.
We ignore any timing inconsistency that may occur between considered tools.

3.3 Verifying timing invariants

Following the aforementioned workflow, one may wonder why the timing behavior
added to the formal SW model is not directly compared against such executions
of circuits and thus considered as our timing model. These ad-hoc timings within
the formal SW model are only compared to traces of an ISS augmented with
a cycle-level timing behaviors. The verification process would thus be limited
to trace equivalence, with thus a limited coverage. While trace coverage can be
easily computed on the SW side for the functional part, the diversity of timing
behaviors on the HW side would be simply ignored.

The timing behaviors of the HW and the SW models must instead be verified
together to establish the function which we name a timing model. Our verification
thus proceeds as follows. The ad-hoc timings of the SW model are first encoded
as timing invariants in the formal HW model. To achieve this, we identify for
each instruction the sequence of hardware updates on the processor, such as
changes on wires and registers. For a non-pipelined processor, a simple input-
ouput relation is defined for each timing invariant. The input represents the
instruction fetch, i.e. when the opcode is taken into account, whereas the output
is instruction-specific, e.g., a memory load terminates with the correct value in
the corresponding register, an ALU instruction modifies the accumulator register,
etc.. The input-output relation depends on the current clock cycle. A timing
invariant should be read as follows: x cycles after an instruction is fetched, where
x is given by the formal SW model, the instruction terminates its execution.

Towards Formal co-Validation of HW/SW Timing Models of CPS 9

Let us denote a timing invariant by TInvi, where i is an instruction from the
language L, i ∈ L. A timing model for an architecture A is thus defined as:

TMA = (
∧
i∈L

TInvi)

The corresponding assertions are then verified via model checking. Finally, we
perform a timing anomaly detection, also via model checking as in [3, 11] to
establish, together with the verified timings, the co-validation of the timing
model.

4 Case study: Lipsi processor

We now illustrate our approach described in the previous section over a case study.
We select a very simple processor, the Lipsi processor [37], to better illustrate
the various steps of our approach. In this section, we thus first briefly describe
the Lipsi processor. Then, we present its formal ISA and HDL models using,
respectively, the Sail and TLA+ languages.

4.1 Overview

Lipsi is a tiny sequential 8-bit accumulator-based processor to be used in auxiliary
functions or for teaching purpose. The ISA of Lipsi includes ALU operations using
registers or immediate operands, load/store from/to the memory, unconditional
and conditional branch, and an input/output (i/o) operation. A complete list of
instructions and their encodings are shown in [37], Table 1. Instructions of Lipsi
are encoded using a single byte, except branch operations and ALU operations
with immediate operands. For these instructions, a second byte is used to store
either the address of the target branch or the value of the immediate operand.

On the hardware side, Lipsi consists of an accumulator register (A), a program
counter (PC), 16 additional registers and a single on-chip memory. Its datapath
is shown in Figure 3. Lipsi targets the use of a single block RAM in FPGA,
which can be as low as 512 bytes. Addresses are thus 9-bits values. The memory
is accessible through 2 ports: one for reads, the other one for writes. The lower
half of the 9-bit memory space therefore stores up to 256 bytes of instructions,
while the upper half stores first 16 additional registers (R[x]) followed by up
to 240 bytes of data. R[X] can be used to store intermediate results when
performing ALU operations. The specification of Lipsi allows to identify up to 16
different ports using bits [3:0] in the encoding of the i/o instruction. However, its
current hardware implementation only uses 2 ports to exchange values with the
accumulator A: one for outputting the value of A and the other one to load a
new value in A. The hardware implementation of Lipsi is written in Chisel, and
it has been synthesized to the Cyclon IV FPGA of the DE2-115 FPGA board.
An Instruction Set Simulator (ISS), written in Scala, is also available.

The hardware implementation of Lipsi comes with a very simple timing model,
as a single memory is connected to the processor. Two clock cycles are required

10 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

Fig. 3: The datapath of Lipsi, using an accumulator A, a single memory, an ALU and a
program counter PC (extracted from [37]).

to execute an ALU instruction: one for fetching the instruction and one for
accessing the data and executing the ALU operation. Loading A with a value
in R[x] also takes 2 cycles, while writing to R[x] only takes 1 cycle due to the
separated read/write ports to the memory. Updating R[x] is performed while the
next instruction is being from the read port. Memory store and load operations
uses the additional registers R[x] to store the targeted memory address. Those
operations thus perform three memory accesses: one for fetching the instruction,
another to retrieve the memory address from R[x], and finally a last one to
perform the memory operation at the specified memory address. A memory load
thus takes 3 cycles, while a memory write takes only 2 cycles as the last access
occurs meanwhile the next instruction is being fetched. Finally, the i/o operation
takes only 1 cycle.

4.2 Formal SW model

We now present the formal SW model of Lipsi using the Sail language. We first
define the architectural state of Lipsi, i.e. its accumulator A, its program counter
PC and the ports used by the i/o instruction, i.e. din and dout for respectively
the input and output ports. The nextPC register is used to store the address of
the branch, i.e. the second byte of a branch instruction, when it is decoded. All
these variables are 8-bits registers, as in the hardware implementation of Lipsi.

type len_t = bits(8) /* 8-bit architecture */

register A : len_t /* Accumulator */

register PC : len_t /* Program Counter */

register nextPC : len_t /* For branch instructions */

register din : len_t /* For the i/o instruction, input port */

register dout : len_t /* output port */

Towards Formal co-Validation of HW/SW Timing Models of CPS 11

Memory model. The structure Memory represents the memory of Lipsi. It
embeds respectively the instruction and data spaces, which are defined as a vector
of bytes. These vectors are organized in downward memory addresses. Finally, a
vector of registers Rs represents the additional registers R[x] of Lipsi.

type memory_data = vector(256, dec, bits(8)) /* Data space */

type memory_inst = vector(240, dec, bits(8)) /* Instruction space */

struct Memory = { Inst : memory_inst, Data : memory_data }

register Rs : vector(16, dec, bits(8)) /* R[x] */

We now show the formal specification of the write operations, for both the
memory space but also for R[x]. The function mem_write updates the content
of Memory with the value v at the memory address adr. Either the instruction
or the data vector of Memory get updated, depending on the value of the Most
Significant Bit (MSB) of adr, a 9-bit value. Note that the data vector is updated
only if adr does not target Rs.

val mem_write : (bits(9), bits(8), Memory) -> vector(256, dec, bits(8))

function mem_write (adr, v, mem) = {

if (adr[8] == 0b1) then {

if (adrbits_to_adrno(adr[7..0]) >= 16) then

plain_vector_update (mem.Data, length(mem.Data) - 1 -

↪→ adrbits_to_adrno(adr[7..0]), v);

else return mem.Data;

} else {

plain_vector_update(mem.Inst, length(mem.Inst) - 1 - adrbits_to_adrno

↪→ (adr[7..0]),v);

}}

The function reg_write updates R[x] and shares with the function mem_write a
similar signature. A string representing the name of register, noted r, is however
used instead of an memory address. r is mapped into an offset in the data vector
using the functions reg_name and regbits_to_regno. X is the setter function to
update Rs with the value v, that uses the overload feature of Sail to abstract read
(not shown) and write accesses (function wX, signature not shown).

function wX (r, v) = if r < 16 then { Rs[15 - r] = v; }

overload X = {rX, wX}

val reg_write : (string, bits(8)) -> unit /* unit equivalent to void */

function reg_write (r, v) = {

X(regbits_to_regno(reg_name(r)), v); }

Finally, the overload feature of Sail is used to abstract the organization of the
memory. Writing to R[x] or the memory to implement the semantic of instruction
is performed by simply calling the function lipsi_write. Similar functions are
used for read operations (shown in the next paragraph).

overload lipsi_write = {mem_write, reg_write}

Instruction and timing models. We now present the part describing
the semantic of instructions. We have modeled in Sail all the ISA of Lipsi, as

12 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

presented in [37] (Table 1). We only show the use of Sail to decode and execute
ALU instructions that rely on registers. First, the syntactic sugar of scattered
definitions is used to group functions related to each instruction in one place,
i.e. AST union ast, mapping function decode and function execute. The AST
type ALU_TYPE_REG represents the considered ALU instructions. The mapping
encdec_alu_func_reg matches a binary value to a constant value representing the
requested ALU operation. The mapping decode matches the machine code of
instructions to the associated AST node within ast. The concatenation operator
@ is used to extract, from the input bitvector, the requested ALU operation
(func) and the index of the additional register (reg). Finally, the function execute

implements the semantic of the instructions by first reading the value from the
specified additional register, i.e. reg_val and then performing the specified ALU
operation on reg_val and A. accureg is a an accessor to A, for reading or writing.

scattered union ast

scattered mapping decode

scattered function execute

union clause ast = ALU_TYPE_Reg : (alu_func_reg, regbits)

mapping encdec_alu_func_reg: alu_func_reg <-> bits(3) = {

LIPSI_ADD <-> 0b000,

LIPSI_SUB <-> 0b001,

...

LIPSI_XOR <-> 0b110,

LIPSI_LD <-> 0b111

}

mapping clause decode = ALU_TYPE_Reg(func, reg) <->

0b0 @ encdec_alu_func_reg(func) @ reg

function clause execute ALU_TYPE_Reg(func, reg) = {

let reg_val : len_t = lipsi_read(regbits_to_regno(reg));

let ret : len_t = match func {

LIPSI_ADD => reg_val + accureg(),

LIPSI_SUB => accureg() - reg_val,

...

LIPSI_XOR => reg_val ^ accureg(),

LIPSI_LD => reg_val

};

accureg(ret);

}

For the timing model, we simply use a register to represent clock cycles. This
register is incremented by the clock cycles associated to each instruction being
decoded. The formal SW model executes instructions in single steps, which is
also equivalent to an instruction-level simulation of the input program. However
this clock register tracks in a cycle-accurate manner the timing behavior of each
instruction.

Towards Formal co-Validation of HW/SW Timing Models of CPS 13

4.3 Formal HW model

We now present the formal HW model of Lipsi processor specified in the TLA+

language. We partially present the specification, using actual code snapshots of
both TLA+ and Chisel codes, in Fig. 4 - 6. Our presentation emphasizes the trace-
ability between the two semantics representations. TLA+ being a specification
framework, it lacks of program-specific infrastructure such as parsing, rich built-in
libraries and AST manipulation. Hence, we also include several workarounds
to preserve the traceability, such as convenient naming for instance. However,
certain information is inevitably less obvious. For example, the type system
of Chisel is abstracted in our TLA+ model, and implicitly the type inference
whose results are manually encoded in the corresponding TLA+ specification.
Our purpose is not to accurately provide a formal executable semantics of Chisel
in TLA+, but to specify, as precisely as possible, the Lipsi Chisel code.

We first present the memory model of Lipsi processor, in Fig. 4, its integration
in the datapath, in Fig. 5 and finally, in Fig. 6 a representative snapshot of Lipsi
processor. Our TLA+ model of Lipsi is cycle-accurate and captures the execution
of a Lipsi instruction through the circuit, with both combinational and sequential
elements being encoded. The TLA+ specification, LipsiSpec consists of the
initial state, LipsiInit and the state transformer LispiTrans, the temporal
operator ”always”, [] preceding the state transformer. It is applied on the system
state LVars (i.e., the set of wires and registers):

LipsiSpec == LipsiInit /\ [] [LipsiTrans]_LVars

Before detailing LispiSpec, let us present the specification of the memory model.

Memory model. The TLA+ specification of the Lipsi memory model, in Fig-
ure 4, adheres to this specification style (e.g., with MemoryInit and MemoryTrans

being presented). On the Chisel side, the Memory class declares a memory zone,

class Memory(prog: String) extends Module {

val mem = Mem(256, UInt(8.W))

val data = mem(rdAddrReg(7, 0))

when(io.wrEna) { mem(io.wrAddr) := io.wrData } ...

}

MemoryInit == ... /\ rdAddrReg = 0 /\ mem = mem_init /\ data = 0

MemoryTrans == ...

/\ mem’ = IF cond_io_wrEna

THEN [n \in 0..255 |->

IF n = io.wrAddr THEN io.wrData ELSE mem[n]]

ELSE mem

/\ rdAddrReg’ = io.rdAddr

/\ data’ = mem[rdAddrReg]

Fig. 4: From Chisel HDL to TLA+ for defining the memory system of Lipsi.

14 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

mem, to store data of a total size 256 and elements of type unsigned int of
size 8 (e.g., UInt(8.W)). data is used to access to an element of mem and is
initialized with the memory value at the address from the register rdAddrReg

(a 9-bit address truncated to 8-bit as mem represents the data space of Lipsi).
The equivalent TLA+ code features the initialization, MemoryInit, of the state
elements mem, data and rdAddrReg with their respective initial values. Note
that mem_init, not listed, initializes mem with zeros. The Lipsi memory model
features read/write memory operations, which are grouped in an interface io,
whose fields are accessed using ”.”. For example, the Chisel code for a memory
write at address io.wrAddr with value io.wrData is conditionally performed
when memory write is enabled, i.e. io.wrEna is true. Its equivalent transition in
the TLA+ specification updates primed mem with value io.wrData, only when
memory write is enabled (i.e., the predicate cond_io_wrEna tests if io.wrEna is
true). Similarly, the new values, rdAddrReg’ and data’ are accordingly provided.
Finally, class Memory is parameterized by prog, an input binary program, which is
stored in a read only memory. These details are omitted due to space constraint.

class Lipsi(prog: String) extends Module {

val mem = Module(new Memory(prog)) ...

}

LOCAL Lmem == INSTANCE Memory WITH ..., rdAddrReg <- 0,

data <- 0, mem <- [n \in 256..512 |-> 0]

LipsiInit == LET memory_state_init == Lmem!memory_init (program) IN

/\ ... /\ mem = memory_state_init.mem

LipsiTrans == LET memory_state == Lmem!update_memory_state (...) IN

/\ ... /\ mem’ = memory_state.mem

Fig. 5: From Chisel HDL to TLA+ when integrating the memory system of Lipsi.

Figure 5 shows the integration of this memory model and how we preserve
the modularity of the Chisel code in our TLA+ specification. The class Lipsi

instantiates a local state variable mem with the memory model from Fig. 4. The
actual creation of the memory object in Chisel (using new) is translated to a
local instance Lmem of Memory, using the construct INSTANCE WITH. LipsiInit
can then use Lmem and apply the function memory_init to set its initial state.
Similarly, LipsiTrans uses the function update_memory_state to apply the
state transformer of the memory model. This updates at each cycle the mem-
ory system mem’. These two functions memory_init and update_memory_state

are the equivalent of MemoryInit and MemoryTrans from Fig. 4, following a
function-based integration approach possible in TLA+. Finally, the parametriza-
tion, with respect to the initial program, from Chisel is preserved in TLA+ via
the memory_init function.

Towards Formal co-Validation of HW/SW Timing Models of CPS 15

val fetch::execute::stind::ldind1::ldind2::exit::Nil = Enum(6)

val stateReg = RegInit(fetch)

val exitReg = RegInit(false.B)

switch(stateReg) {

is (fetch) {

stateReg := execute ...

when (rdData(7) === 0.U) {... enaAccuReg := true.B ...}

...

when (rdData === 0xf0.U) {

outReg := accuReg enaIoReg := true.B stateReg := fetch }

when (rdData === 0xff.U) { stateReg := exit }

} ...

is (stind) { wrEna := true.B stateReg := fetch }

is (execute) { stateReg := fetch }

is (exit) { exitReg := true.B }

}

LOCAL fetch == 0 ... LOCAL exit == 5

cond_rdData_eq_Bits0 (rddata) == b7(rddata) = 0

cond_rdData_eq_Bits0xf0 (rddata) == rddata = 240

cond_rdData_eq_Bits0xff (rddata) == rddata = 255

cond_stateReg_eq_fetch == stateReg = fetch

cond_stateReg_eq_stind == stateReg = stind

cond_stateReg_eq_execute == stateReg = execute

cond_stateReg_eq_exit == stateReg = exit

...

LipsiInit == ... /\ stateReg = fetch /\ exitReg = FALSE

LipsiTrans == ...

/\ exitReg’ = IF cond_stateReg_eq_exit THEN TRUE ELSE FALSE

/\ outReg’ =

IF cond_stateReg_eq_fetch

THEN IF cond_rdData_eq_Bits0xf0 (memory_state.io.rdData)

THEN accuReg ELSE outReg

ELSE outReg

/\ stateReg’ = ...

IF cond_stateReg_eq_fetch

THEN ... IF X_cond_rdData_eq_Bits0xff (memory_state.io.rdData)

THEN exit ELSE fetch

ELSE IF cond_stateReg_eq_stind

THEN fetch ELSE IF cond_stateReg_eq_execute ...

Fig. 6: From Chisel HDL to TLA+ for snapshot of Lipsi FSM.

16 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

Instruction and timing models. Figure 6 presents a snapshot of how Lipsi
executes instructions. Compared to the formal SW model, an instruction is here
executed in potentially several clock cycles, i.e. cycle-level execution, by updating
corresponding values in the wires and the registers of Lipsi. Lipsi is implemented
with a Finite State Machine (FSM), whose states are first defined, represented as
a list (Enum). The position in the list identifies the current state, captured in the
register stateReg which is initialized to fetch (and equal to 0). Such states are
encoded in TLA+ as a sequence of LOCAL declarations with explicit assignments
corresponding to their position in the list, while initializing stateReg to fetch

in LipsiInit. In a similar way, an exit flag (corresponding to the instruction
exit in Lipsi ISA) is set accordingly in both Chisel and TLA+.

The control logic of the FSM of Lipsi is handled by a switch statement over
the current value of stateReg. When is(fetch) is true, the next state is by
default set to execute (i.e., stateReg := execute) for the next cycle. However,
any subsequent modification of stateReg, in the same clock cycle, overrides this
modification, a behavior common to any HDL language. For example, if the
instruction is an io (i.e., the opcode is equal to 0xf0.U), stateReg is reset to
fetch for the next cycle (while copying the value of the accumulator, accuReg to
outReg and setting enaIoReg to true). The timing model of the io instruction is
thus one clock cycle. The other states are used to store the output of the decode
when an instruction is fetched. For instance, is(stind) enables the memory
write, i.e. the signal wrEna is set to true, while resetting stateReg to fetch. The
timing model of a store instruction is thus one clock cycle, as the write occurs
at the next cycle while the next instruction is fetched. Similarly, is(execute)
resets stateReg, implying that execute represents the last stage in the timing
model of some instructions. Finally, is(exit) signals the end of the program
execution, represented in Lipsi by a specialized register exitReg. Therefore, exit
takes three clock cycles. At the first cycle, the instruction is identified during
is(fetch) based on its opcode 0xff.U and the next state of Lipsi set to exit.
At the second clock cycle, exitReg is set to true, a change that would be visible
at the third clock cycle. Contrary to other instructions, no further instruction
can be fetched at this third clock cycle that we thus count in the timing behavior
of the exit instruction.

The TLA+ encoding of this code fragment is driven by a cascades of conditions
on both the value of stateReg (e.g., cond_stateReg_eq_) and the instruction
opcode (e.g., cond_rdData_eq_Bits). For example, exitReg’ is set to true when
the corresponding condition on stateReg is exit and outReg’ is updated with the
value in the accumulator, accuReg only when stateReg is fetch and the opcode
is 0xf0 (i.e., cond_rdData_eq_Bits0xf0 is true). Otherwise it stays unmodified,
as outReg. In a similar way, stateReg’ is updated with the corresponding value,
capturing, in this way part of the timing model that we prove in the next section.

Towards Formal co-Validation of HW/SW Timing Models of CPS 17

5 Evaluation results

We first report the discrepancies we found between the SW and the HW models
of Lipsi, while applying our approach. These discrepancies concern not only
the functional semantic but also on the timing semantic, justifying the need for
formalization and verification of timing models. Finally, we present a use-case for
such built timing models to detect interferences in a multi-core context.

Semantic discrepancies. We identified several semantics discrepancies when
we performed the trace equivalence between traces from formal SW model and
the simulators and the circuit (steps (2) and (3) on the SW side of our approach,
see section 3.2). First the instructions sh and brl, specified in the ISA of Lipsi,
are not implemented in the Chisel hardware design of Lipsi. Next, the instructions
adc and sbb gives output that are equivalent to respectively the add and the
sub instructions. However, these are known unfinished implementation of the
ISA by the author of the Lipsi circuit.

A more interesting discrepancy concerns the i/o instruction. Its specification
allows the first 4 bits of its encoding to be used to specify i/o ports. However,
the hardware implementation of Lipsi only uses a single i/o port, the one with
value index 0. Any other index value than 0 leads to a silent drop of the next
instruction (PC + 1), i.e. the execution continues at PC + 2. Even if this
unprocessed instruction leads to be interpreted as an ALU operation (default
decoding), the value of the accumulator is not modified as it is guarded by a
boolean value, not set by default. Note that contrary to the previous discrepancies,
this difference was not explicitly documented in the hardware implementation of
Lipsi.

Finally, while the instruction exit takes 3 cycles in the Lipsi circuit, it only
takes 1 cycle in the Lipsi simulator. Our goal is to detect timing discrepancies
and not to point out functionality issues in the considered design. However,
such findings demonstrate that we can detect any kind of semantic discrepancy
between the specified ISA and implementations of it.

Proving the timing model. We exemplify next the following timing invari-
ants TInvi in Lipsi, with i ∈ { exit, io, add, ld } (io being the i/o instruction).
We recall that formal HW model of Lipsi is cycle accurate and a cycle variable is
incremented every time the system makes a transition. The opcode of the fetched
instruction is stored in curr_instr. Also, for each invariant, we use a counter
variable x_, which is initialized to 0 and incremented at each clock cycle. Then,
this value is compared with the result of the augmented formal ISA to ensure
that the timing on both SW- and HW-level are the same. Note that this counter
variable is not necessary, but we opt to explicitly encode it for clarity (i.e., an
alternative is to directly use the processor clock cycle).

Next, we present the invariant for the instruction exit.

inv_exit (curr_instr) == curr_instr = 255 /\ exitReg /\ x_exit <= 3

18 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

Informally, it states that, whenever an instruction corresponds to an exit (its
opcode is 0xff or 255), the register exitReg becomes true 3 clock cycles later.
This property follows the semantic of Chisel code from Fig. 6, with curr_instr

corresponding to rdData, stateReg := exit triggers at the next clock cycle the
assignment to exitReg guarded by the condition is(exit), assignment observed
at a further next clock cycle. The timing of instruction exit is thus 3 clock cycles
(i.e., the condition x_exit) and proved using the TLC model checker.

The timing invariant of the instruction io is presented next.

inv_io (curr_instr) ==

LET val == curr_instr - 240 IN

/\ curr_instr >= 240 /\ curr_instr <= 254

/\ ((enaIoReg /\ val = 0) \/ not (val = 0))

/\ io.dout = val

/\ x_io <= 1

This instruction covers a range of opcodes, depending on the i/o port identifier.
For example, the instruction 0xf1 is an io (opcode 0xf0 or 240) and the i/o
port number 1. The variable val in the TInvio represents the port number.
With respect to i/o ports, the semantics of io is under-specified in [37]: the port
number is not used by the instruction. Therefore, the implementation in the
circuit only supports the use of port 0, i.e. 0xf0 is the only accepted opcode, as
seen previously. The invariant captures the following pattern: the instruction is
identified as io and the port identifier is calculated in val, the register enaIoReg
is updated to allow the actual port output. The timing of instruction io is proved
to be 1 clock cycle.

Next, we present TInvadd.

inv_add (curr_instr, rddata) ==

LET reg == curr_instr IN

/\ curr_instr >= 0 /\ curr_instr <= 15

/\ \/ (not (rddata = reg) /\ (not (reg = 0)) /\ enaAccuReg

\/ not (res = reg)

/\ x_add <= 2

Similarly to io, the opcodes for add include the value to be processed via the
accumulator (i.e., the range is between 0x00 and 0x0f, according to Table 1
from [37]). The instruction add executes in two cycles. In the first cycle, the
instruction is fetched and the flag register enaAccuReg is set to true. In the
second cycle, the actual addition is computed, with the result deposited in res.
We use an auxiliary variable reg to distinguish between two cases, depending if
the operand is 0 or not (and if the res remains the same, even after the addition
is performed). TInvadd does not include functional correctness, i.e. that the
correct addition is performed, only that the accumulator is updated after two
clock cycles. However, it could also be possible to have a functionality criterion
included as well, as it is the case with the next timing invariant for a memory
load instruction, ld.

Towards Formal co-Validation of HW/SW Timing Models of CPS 19

The opcodes of ld are also in a range of values, the difference with 0x70 (or
112) being the target memory address. This address is represented by val. This
instruction takes two cycles. The classical fetch first, followed with the actual
memory read, deposited in the accumulator, accuReg.

inv_ld (curr_instr) ==

LET val == curr_instr - 112 IN

/\ curr_instr >= 112 /\ curr_instr <= 127

/\ accuReg = mem[val]

/\ x_ld <= 2

We could also express TInvld as TInvadd, i.e. without any functional checking,
by replacing the actual functionality by only a check that the memory is accessed.
The other timing invariants are expressed in a similar fashion and proved using
the TLC model checker.

Detection of interferences. We briefly report a illustration of the possible
use of the built timing model: the detection of memory interferences. We thus
consider three different input binaries to be run in our formal SW model of Lipsi,
in order to represent a multi-core setting of Lipsi. Each Lipsi core is identified by
an index. Besides, as each Lipsi has its own private memory, we rely on the i/o
instruction to emulate the access to a shared device. Note that we only emulate
the access to a shared device, not the device itself nor its arbitration policy. If two
i/o accesses occur at the same time, we thus assume that the one coming from
the Lipsi with the smallest index wins the access. The other Lipsi cores continue
their execution as if their accesses were valid, as we are mostly interested in
timing properties of programs not in their functional correctness.

For the input binaries, we reuse the same memory model for the spacing of
memory accesses as in [15]. In this model, tasks or programs are represented as
a sequence of memory requests separated by a given number of processor clock
cycles, representing the amount of computation that is performed between two
memory accesses. We assume a composable computer architecture [14], which
ensures that the distance between requests is independent from the execution
of other tasks. The only interference between the independent tasks thus stems
from accesses to the emulated shared device.

The sequences of memory requests of our three input programs are: (A : 2, 24, 12),
(B : 14, 4, 2) and (C : 26, 6). Program A is made of 2 loops and thus generates i/o
accesses at the (absolute) times 2, 26 and 38. Program B is made of a single loop
and generates i/o accesses at the (absolute) times 14, 18 and 20. Finally, program
C is also made of a single loop and generates i/o accesses at the absolute (times)
26 and 32. It is then trivial to detect that an interference is going to occur at
time 26 between program A and C. Our next step is to modify the input binaries,
by adding appropriate nop instructions (ALU operations that do not change the
current value of A) or by introducing a delay instruction, as in Patmos or PRET,
in order to space out i/o accesses. While a straightforward algorithm can solve
this problem for programs with a single path, the presence of multiple paths in

20 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

input programs lead to an interesting optimization problem of minimizing the
number of interferences.

6 Related Work

Traditionally, HW/SW co-verification methods [30, 29, 23, 19] consider SW to
be represented in higher-level languages than our low-level approach (which
is characteristic to worst-case timing reasoning [40]) and HW to be based on
HDL languages. These works use model checking techniques and focus mostly on
proving functionality properties, while we propose advancements on the timing
properties, also using model checking. For example, C code and Verilog designs
are verified together via bounded model checking, in [30], similarly with the
co-verification technique from [29], where model checking is used on C code and
hardware abstractions based on push-down systems. High-level code is co-verified
with HDL designs, in [19], by a combination of BDD-based model checking for
HW and partial order reduction for SW. All these approaches consider an implicit
interface between hardware and software (i.e., we presented this interface under
the name of hardware patterns). An explicit interface is expressed in [13] and
integrated in the HW/SW co-verification procedure based on bounded model
checking (i.e., as a side note, the application is considered at binary level).

Our approach increases the confidence in the formal semantics of ISA with
the help of an ISS, providing a de facto procedure to actually verify an ISS.
There are several works [5, 18], centered on the verification of ISS and its use
in HW/SW co-verification. The ISS presented in [5] is symbolic and addresses
both functional and timing properties in processors using assertions in a similar
way with our procedure as another symbolic ISS, which is constructed over an
instruction-level abstraction [18].

WCET analysis tools require a clear and explicit specification of timing
models of architectures to estimate WCET [40]. One approach is to rely on a
product of timed automata to model the timing behavior of hardware elements,
such as pipelines, caches, etc [6, 9]. WCET estimates are then obtained using the
UPPAAL model-checker. However, in both cases, the timing accuracy of the hand-
made models, which are difficult to design, are unclear and simplified compared to
the underlying micro-architecture. Another approach is to automatically extract
timing information from HDL processor designs, either using static analysis, as
in [36] or aiming for patterns of pipelining using abstract simulation, as in [32].
Both approach work directly on the processor code (in this case VHDL) as
our approach, however we differ in the formal technique: static analysis and
respectively model-checking.

Another approach is to extend classical ISA-level Architecture Description
Languages (ADLs) [28], such as ArchC or Sim-nML, to include the specification
of timing models at the micro-architecture level. The OTAWA WCET analysis
framework relies on an extended Sim-nML to specify timing models of pipelines
by describing resource allocations of instructions over pipeline stages, functional
units and buffers [16]. In [24, 25], the ADL Expression language is used to

Towards Formal co-Validation of HW/SW Timing Models of CPS 21

describe both ISA but also contention and parallelism relations at the micro-
architecture, i.e. the timing model. Execution graphs are then generated on which
WCET analysis are performed. The LISA ADL language [31] also enables the
assignment of operations to pipeline stages, potentially with delays. Compared
to timed automata models, the ADL-based approach enables the specification of
timing models at a high-level description, from which low-level network of timed
automata can be generated. However, they still have no link with the timing
model at the HDL level and timing anomalies are ignored.

Designing retargetable compilers has led to the design on processor models
in order to extract instruction sets [8, 21, 33]. However, they rely on the use of
reservation table to describe pipeline operations which is not timing-accurate to
model pipeline hazards.

In a different area, [17] proposes a timing-abstract behavioral model of
pipelines to increase IP reuse and reduce bugs when optimizing implementations,
for instance when performing logic retiming. Cycle-level details, such as pipeline
staging, are generated from a concise specification through a process called timing
augmentation.

7 Conclusion and future work

We proposed a general methodology to reason about timing properties of CPSs by
taking into account the interplay between HW and SW, both formally specified
and verified. We also reported on how our methodology is applied on a simple
processor called Lipsi towards defining and proving its timing model. Due to the
formal nature of our approach we also discovered several semantic inconsistencies,
both functional and temporal, between the specification and the implementation
of Lipsi. Our methodology is demonstrated using a formal semantics of Lipsi ISA
using the Sail language and a formal specification of the corresponding hardware
implementation in Chisel code, using the TLA+ reasoning framework.

We are currently pursuing several lines of research. First, we aim to auto-
matically generate formal (TLA+) models and the necessary timing invariants
directly for the HDL code. Second, Lipsi is a simple processor, we have ongo-
ing work on popular RISC-V designs, with complicated timing models due to
pipelining, multi-level caches and speculation mechanism. Research communities
on the WCET analysis [41] or synchronous languages [7] rely on traceability
to transfer high-level semantics to low-level code [22, 34]. We are interested in
leveraging high-level timing properties and traceability enhancements within our
HW and SW timing models. Finally, we plan to address timing models for the
communication part of the CPSs, which are currently abstracted away in our
current proposition.

References

1. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,

22 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

N., Sewell, P.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS. PACMPL
3(POPL), 71:1–71:31 (2019)

2. Asavoae, M.: K semantics for assembly languages: A case study. Electr. Notes
Theor. Comput. Sci. 304, 111–125 (2014)

3. Asavoae, M., Hedia, B.B., Jan, M.: Formal executable models for automatic detec-
tion of timing anomalies. In: 18th International Workshop on Worst-Case Execution
Time Analysis, WCET 2018. pp. 2:1–2:13 (2018)

4. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., Wawrzynek,
J., Asanović, K.: Chisel: Constructing hardware in a scala embedded language. In:
Proceedings of the 49th Annual Design Automation Conference. pp. 1216–1225.
DAC ’12, ACM (2012)

5. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation
methodology. In: Proceedings of the 31st Conference on Design Automation, 1994.
pp. 596–602 (1994)

6. Béchennec, J., Cassez, F.: Computation of WCET using program slicing and real-
time model-checking. CoRR abs/1105.1633 (2011), http://arxiv.org/abs/1105.
1633

7. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1),
64–83 (2003)

8. Bradlee, D.G., Henry, R.R., Eggers, S.J.: The marion system for retargetable
instruction scheduling. SIGPLAN Not. 26(6), 229–240 (May 1991)

9. Dalsgaard, A.E., Olesen, M.C., Toft, M., Hansen, R.R., Larsen, K.G.: METAMOC:
Modular Execution Time Analysis using Model Checking. In: Lisper, B. (ed.) 10th
International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
OpenAccess Series in Informatics (OASIcs), vol. 15, pp. 113–123 (2010)

10. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Rosu, G.: A complete formal
semantics of x86-64 user-level instruction set architecture. In: Proceedings of the
40th PLDI 2019. pp. 1133–1148 (2019)

11. Eisinger, J., Polian, I., Becker, B., Metzner, A., Thesing, S., Wilhelm, R.: Automatic
identification of timing anomalies for cycle-accurate worst-case execution time
analysis. In: Proceedings of the 9th IEEE Workshop on Design & Diagnostics of
Electronic Circuits & Systems (DDECS 2006), Prague, Czech Republic, April 18-21,
2006. pp. 15–20 (2006)

12. Gordon, M.J.C.: The semantic challenge of verilog HDL. In: Proceedings, 10th
Annual IEEE Symposium on Logic in Computer Science, San Diego, 26-29, 1995.
pp. 136–145 (1995)

13. Große, D., Kühne, U., Drechsler, R.: HW/SW co-verification of embedded systems
using bounded model checking. In: Proceedings of the 16th ACM Great Lakes
Symposium on VLSI 2006. pp. 43–48 (2006)

14. Hahn, S., Reineke, J., Wilhelm, R.: Towards compositionality in execution time
analysis: definition and challenges. SIGBED Review 12(1), 28–36 (2015)

15. Hebbache, F., Jan, M., Brandner, F., Pautet, L.: Shedding the shackles of time-
division multiplexing. In: 2018 IEEE Real-Time Systems Symposium, RTSS, 2018.
pp. 456–468 (2018)

16. Herbegue, H., Filali, M., Cassé, H.: Formal architecture specification for time
analysis. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) Architecture of
Computing Systems – ARCS 2014. pp. 98–110. Springer International Publishing,
Cham (2014)

Towards Formal co-Validation of HW/SW Timing Models of CPS 23

17. Hoover, S.F.: Timing-abstract circuit design in transaction-level verilog. In: 2017
IEEE International Conference on Computer Design (ICCD). pp. 525–532 (Nov
2017)

18. Huang, B., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., Malik, S.: Instruction-
level abstraction (ILA): A uniform specification for system-on-chip (soc) verification.
ACM Trans. Design Autom. Electr. Syst. 24(1), 10:1–10:24 (2019)

19. Kurshan, R.P., Levin, V., Minea, M., Peled, D.A., Yenigün, H.: Combining software
and hardware verification techniques. Formal Methods in System Design 21(3),
251–280 (2002)

20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

21. Leupers, R., Marwedel, P.: A bdd-based frontend for retargetable compilers. In:
Proceedings the European Design and Test Conference. ED TC 1995. pp. 239–243
(March 1995)

22. Li, H., Puaut, I., Rohou, E.: Tracing flow information for tighter WCET estimation:
Application to vectorization. In: 21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2015, Hong Kong,
China, August 19-21, 2015. pp. 217–226 (2015)

23. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An automata-theoretic approach
to hardware/software co-verification. In: Fundamental Approaches to Software
Engineering, 13th International Conference, FASE 2010. pp. 248–262 (2010)

24. Li, X., Roychoudhury, A., Mitra, T., Mishra, P., Cheng, X.: A retargetable software
timing analyzer using architecture description language. In: 2007 Asia and South
Pacific Design Automation Conference. pp. 396–401 (Jan 2007)

25. Li, X., Roychoudhury, A., Mitra, T.: Modeling out-of-order processors for wcet
analysis. Real-Time Systems 34(3), 195–227 (Nov 2006)

26. Liu, I., et al.: A PRET microarchitecture implementation with repeatable timing
and competitive performance. In: 2012 IEEE 30th international conference on
computer design (ICCD). pp. 87–93. IEEE (2012)

27. Meredith, P.O., Katelman, M., Meseguer, J., Rosu, G.: A formal executable seman-
tics of verilog. In: 8th ACM/IEEE MEMOCODE 2010, Grenoble, France, 2010. pp.
179–188 (2010)

28. Mishra, P., Dutt, N. (eds.): Processor Description Languages, application and
methodologies, vol. 1 in Systems on Silicon. Morgan Kaufman (2008)

29. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Proceedings of the 7th ACM & IEEE International conference on Embedded
software, EMSOFT 2007. pp. 30–36 (2007)

30. Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal techniques for
effective co-verification of hardware/software co-designs. In: Proceedings of the 54th
Annual Design Automation Conference, DAC 2017. pp. 35:1–35:6 (2017)

31. Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: Lisa-machine description language
for cycle-accurate models of programmable dsp architectures. In: Proceedings 1999
Design Automation Conference (Cat. No. 99CH36361). pp. 933–938 (June 1999)

32. Pister, M.: Timing model derivation: pipeline analyzer generation from hardware
description languages. Ph.D. thesis, Saarland University (2012)

33. Rau, B.R., Kathail, V., Aditya, S.: Machine-description driven compilers for epic
and vliw processors. Design Automation for Embedded Systems 4(2), 71–118 (Mar
1999)

34. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F., Asavoae, M.: Timing
analysis enhancement for synchronous program. Real-Time Systems 51(2), 192–220
(2015)

24 Asavoae, Haur, Jan, Ben Hedia, and Schoeberl

35. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A definition and classification of timing anomalies. In: 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis (2006)

36. Schlickling, M.: Timing model derivation: static analysis of hardware description
languages. Ph.D. thesis, Saarland University (2013)

37. Schoeberl, M.: Lipsi: Probably the smallest processor in the world. In: Architecture
of Computing Systems - ARCS 2018 - 31st International Conference. pp. 18–30
(2018)

38. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: A
time-predictable microprocessor. Real-Time Systems 54(2), 389–423 (Apr 2018).
https://doi.org/10.1007/s11241-018-9300-4

39. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Systems 28(2-3),
157–177 (2004)

40. Wilhelm, R.: Formal analysis of processor timing models. In: Model Checking
Software, 11th International SPIN Workshop. pp. 1–4 (2004)

41. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner,
P.P., Staschulat, J., Stenström, P.: The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embedded Comput. Syst. 7(3), 36:1–
36:53 (2008)

42. Wolf, C.: A RISC-V Formal Verification Framework.
https://github.com/cliffordwolf/riscv-formal

43. Yu, Y., Manolios, P., Lamport, L.: Model checking tla+ specifications. In: 10th IFIP
WG 10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. pp. 54–66. CHARME ’99 (1999)

